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Abstract—Deciphering the free energy landscape of biomolecular structure space is crucial for understanding many complex
molecular processes, such as protein-protein interaction, RNA folding, and protein folding. A major source of current dynamic structure
data is Molecular Dynamics (MD) simulations. Several methods have been proposed to investigate the free energy landscape from MD
data, but all of them rely on the assumption that kinetic similarity is associated with global geometric similarity, which may lead to
unsatisfactory results. In this paper, we proposed a new method called Conditional Angle Partition Tree to reveal the hierarchical free
energy landscape by correlating local geometric similarity with kinetic similarity. Its application on the benchmark alanine dipeptide MD
data showed a much better performance than existing methods in exploring and understanding the free energy landscape. We also
applied it to the MD data of Villin HP35. Our results are more reasonable on various aspects than those from other methods and very

informative on the hierarchical structure of its energy landscape.

Index Terms—Markov State Model, Molecular Dynamics Simulation, Free Energy Landscape, Metastable states.

1 INTRODUCTION

ROTEINS and nucleic acids depend on their

biomolecular structures to perform their biological
functions properly. These biomolecules may also undergo
reversible transitions between alternative structures called
different conformations. Conformations have different
amounts of Gibbs free energy, which characterize their
different thermodynamic stability, with lower free energy
corresponding to more stable status. The free energy
landscape of a conformational space is usually rugged [1],
[2], with a number of high-energy barriers partitioning the
space into a set of metastable low-energy wells, which are
also called macrostates [3]. It is crucial to understand the
free energy landscape and the conformational dynamics
within and between energy wells in order to study many
biological or chemical processes, such as protein-protein
interaction, RNA fold, and protein folding. Improper
conformational changes, such as protein misfolding, are
linked to many serious diseases, such as Alzheimer’s
disease, Bovine spongiform encephalopathy, Huntington’s
disease, Parkinson’s disease, cancers and cancer-related
syndromes [4].

Several existing experimental techniques can be
used to study conformational changes at the atomic
level to certain extent. For example, X-ray imaging
can provide static snapshots of biomolecules; nuclear
magnetic resonance can provide dynamic information for
small biomolecular systems; single molecule fluorescence
resonance energy transfer can provide dynamic information
on conformational changes along certain order parameter
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such as the distance between a probe pair; Cryo-electron
microscopy can determine biomolecular structures at near-
atomic resolution. However, it is either impossible or too
expensive for these experimental techniques to provide
global dynamic information on conformational changes at
atomic resolution. To complement this shortage, Molecular
Dynamics (MD) and Monte Carlo computer algorithms are
used to simulate conformational trajectories [5], [6], [7].
Molecular Dynamics (MD) simulations sample from a
conformational space by producing a number of trajectories.
Each trajectory records a sequence of conformations at times
t =0, 7,27, ...,nT, where 7 denotes the observation interval.
Due to the complexity of the rugged free energy landscape,
generalized ensemble algorithms, such as multicanonical
algorithm [8], Replica Exchange [9] and long time dynamical
simulations [10], [11], are used in MD simulations to
generate a wider sampling by helping the simulation
trajectories pass through energy barriers with a higher
probability and avoid trapping in local modes [12].
However, there is a gap between the timescale of
computer simulations and the timescale of typical real
biological conformational changes. Since the conformational
space is a high-dimensional continuous coordinate space,
the raw simulation trajectories may contain thousands
of conformations, but very few transitions between any
specific pair of these conformations can be observed from
the simulation trajectories, i.e., the entries of transition
matrix between conformations are almost zero. The aim
of analyzing MD data is to find the metastable structures
of the biomolecular and study the dynamics between
them. To elucidate the free energy landscape of the
conformational space from these simulated trajectories,
a two-step procedure [3], [13], [14], [15] is commonly
used, such as Perron Cluster Cluster Analysis (PCCA)
and its variants [3], [16], [17], Most Probable Path (MPP)
[13], Gibbs sampling [14], Automatic Partitioning for
Multibody systems (APM) [18], transition disconnectivity



graph (TRDG) [19], [20] and Minimum Variance Clustering
Approach (MVCA) [21].

Typically, a two-step procedure is used to learn
metastable states from MD data. In the first step, which
is called the splitting step, conformations are grouped
into a number of small tight sets called microstates
according to their geometric similarity. This is the so
called geometric clustering step, which is a kind of
clustering for vectorial data [22]. With a high similarity
threshold, the conformations within a microstate can have
both geometric and kinetic similarity, which ensures fast
converting among them. We say two conformations are
geometrically similar, if they are close in geometric distance.
Kinetic (dynamic) similarity between two conformations
(microstates) is measured by the transition probability
between them. Higher transition probability implies more
similar in dynamics. The transition probability matrix
between two conformations (microstates) is obtained by
normalizing the transition matrix such that the sum of each
row is 1, see Supplementary Figure 1 for an illustration.
After mapping simulation trajectories from a sequence of
conformations to a sequence of microstates and making
use of the time-reversible/detailed-balance nature of MD
simulations [23], the connections among all microstates are
used to form a transition matrix, where each cell denotes
the counts of transitioning from its column microstate to
row microstate [24].

The second step, which is called the lumping step, is to
cluster microstates into macrostates based on the transition
matrix beween microstates at the microstate level. This is
the so-called kinetic (dynamic) clustering step. It is a special
type of clustering on pairwise similarity data or weighted
network data [25]. Several classes of methods have been
proposed for this problem. One class of methods is based
on main eigenvectors of the transition matrix, such as PCCA
[26] and its modified versions [3], [17], [24]. Another class of
methods formulate the problem as a steepest-descent-search
or minimum-cut problem based on the idea of maximizing
the sum of intra-macrostate transition probabilities, such as
the original steepest descent method by [27], the iterative
K-medoid partitioning and lumping algorithm [16], the cut-
based free-energy profile [28] and MPP [13]. Except for these
specialized methods, some general clustering methods for
pairwise similarity data may also, in principle, be adapted to
this kinetic clustering problem, such as k-means clustering
[29], self-organizing maps [30], maximum entropy [31] and
deterministic annealing [32]. But all these methods can
neither efficiently handle the sparseness of the microstate
transition matrix nor provide a comprehensive hierarchical
view of the number of clusters and the cluster structure. For
example, the methods based on eigenvector calculation tend
to be numerically unstable due to the sparse counts resulting
from insufficient sampling [24]. Also, the number of clusters
is assumed known for most of existing clustering methods,
with few exceptions such as the Chinese restaurant process
approach [33], [34], which is only applicable to vector data.
Therefore, they cannot be applied to the energy landscape
case due to its multi-resolution nature, i.e., the number
of clusters essentially depends on which resolution the
algorithm is sampling in the energy hierarchy.

In the above two-step procedure, the first step only uses
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the geometric similarity information while the second only
uses the kinetic similarity. See [35] for more discussion on
this procedure. In this paper, we proposed a new method,
CAPT, which makes use of both geometric and kinetic
similarity information throughout the whole process. Our
method is built on the following facts: 1) local structures,
more specifically the dihedral angles of amino acid residues
in the backbone is the main source of the energy wells [36],
[37]; 2) the distribution of dihedral angles contributing to
the free energy landscape is not uniform. These facts make
the joint space of dihedral angles highly multi-modal, thus
forming different energy wells. Our new method selects
important backbone dihedral angles to partition the joint
space of all dihedral angles in a tree structure. We apply our
method to two molecular systems to show that our method
can elucidate the conformational space efficiently.

2 METHODS

Our method is motivated by two key observations. The first
one is from the cause of energy barriers. The second one
comes from the separated use of geometrical similarity and
dynamical similarity in the two-step procedure taken by
most existing methods, as described previously. We shall
elaborate more on these two observations.

2.1 Energy Barrier

The first key observation is about the basic knowledge of
biomolecular energy wells. The existence of energy barriers
is due to the minimum distance between two atoms. For
example, the minimum distance between two H atoms
is 2.0 A, and that between an H and a C atom is 2.4
A [38]. The distance between two atoms changes when
related residues rotate. If the distance between two atoms
becomes closer to their minimum distance, it becomes
more difficult for this residue to rotate further in the same
direction. This explains why the range of rotation of this
residue is restricted to a subregion/interval of [—7, 7] in
the Ramachandran plot (also called Ramachandran diagram
or [¢, ] plot) of biomolecules. Importantly, the evolution
between different conformations is mainly caused by such
kind of rotations [38], [39], [40], and the backbone torsion
angles are used to build native protein conformations [41],
which implies the torsion angles are informative to protein
structures. Furthermore, it was shown that normal modes
in torsion angle space better correlate with conformation
changes in proteins [42]. Thus, we use backbone torsion
angles to describe biomolecules. This strategy is also used
in, for example, [36], [37], [43], [44].

2.2 Analysis of the Two-step Procedure

We secondly observe that the two-step procedure with
splitting step and lumping step is taken by most popular
methods, such as PCCA [16], [45], PCCA+ [17], [46], MPP
[13], and Gibbs sampling method [14]. The splitting step
clusters conformations into microstates using K-means/K-
medoids based on principal components of 3-D coordinate
data or backbone torsion angle data. The lumping
step clusters microstates into macrostates. Essentially, the
splitting step clusters conformations into microstates based



on geometrical similarity, while the lumping step lumps
microstates into macrostates based on dynamical similarity.

The key assumption for the splitting step is that two
conformations are in the same microstate if they are
geometrically similar. PCCA, PCCA+ and MPP use K-
means/K-medoids in this step to cluster conformations
into microstates. However, one can not make sure results
obtained by K-means/K-medoids have the following
clustering property: conformations belonging to the same
microstate are around a small neighborhood of the center
of this microstate. More specifically, we shall require an e-
cover of the whole space with centers {P1, Py, ...P,} such
that for each conformation P, there is an P;, such that
d(P,P;) < ¢, where d(-,-) is a distance function, and it can
be defined on principal components of torsion angles, see
for example, [13], [43], [44], [47]. There are two difficulties
for constructing such an e-cover. Firstly, it is hard, especially
in high dimensional space, to make sure balls with center F;
and radius ¢ are disjoint. Secondly, it is difficult to determine
e. If € is too small, there are too many microstates to handle
with, and the transition frequency between two microstates
will be very low. If € is too large, the cluster structure will
be covered, which induces additional difficulty in exploring
the landscape. Furthermore, due to the huge number of
conformations to be clustered, the K-means/K-medoids
algorithm usually converges to a local mode instead of a
global mode.

In the lumping step, based on microstates found in
the splitting step, both PCCA and PCCA+ try to group
the microstates into macrostates by maximizing the sum
of diagonals of the transition matrix among macrostates
[16], [17], [45]. For MPP, this dynamical clustering is based
on the so called most probable pathway. More specifically,
MPP merges a microstate with its neighboring microstate
on its most probable pathway which has the lowest free
energy. Basically, PCCA, PCCA+ and MPP do not consider
geometrical similarity between conformations in this step,
and fully depends on the dynamical information. Different
from these methods, Gibbs sampling algorithm tries to
cluster microstates into macrostates based on a Bayesian
Poisson model, which also depends only on the dynamical
information.

Methods mentioned above consider separately the
geometrical similarity and dynamical similarity, which is
not reasonable. Undoubtedly, conformations in the same
microstate are of both high geometrical similarity and
high dynamical similarity. For macrostates, the dynamical
similarity may come from their local geometrical similarity.
However, this kind of relationship between geometrical
similarity and dynamical similarity is ignored by other
methods such as MPP, APM and PCCA/PCCA+. This
motivated us to always consider both types of similarity
simultaneously.

2.3 Definitions

In the following, we give definitions of key elements for
our algorithm: partition score, mean absolute distance and
one-step distance

Definition 1 (Partition score of angle §). Assume that we
have observations {6 ,--- 05} for a given dihedral angle 0 in

Algorithm 1 Conditional Angle Partition Tree (CAPT)
Input:
pcluster: the parent cluster to be further partitioned
angles: backbone torsion angles along with the trajectories
Sp : Minimal size of a cluster to be generated
S : Minimal size of a cluster to be further partitioned
Py : Minimal self-transition probability
P, : Cutoff of self-transition probability (P, > Fp)
kernel: the kernel function used for estimating marginal
density of torsion angle
Output: Clustering labels
Initialization: All conformations are labeled as cluster ‘0’
CAPT(pcluster, angles, Sy, S, Py, Pe, kernel)
{
find the angle with the highest partition score in the
cluster ‘pcluster’ and the number of local modes, k;
if Stopping Criteria are unsatisfied then
Label the sub-groups as new clusters(‘01’,- - - ,’0k’) and
update cluster labels;
for new_cluster= ‘01’,- - - ,/0k’ do
CAPT(pcluster=new_cluster, angles, Sy, S., Fo,
kernel);
end for
Return clustering labels;
end if

}

parent cluster C, where n is the number of frames/conformations
in the cluster C. If there are k local modes in the density of 0,
we partition frames in this cluster into k sub-clusters (states) by
naive Bayesian classifier [48]. Then the original MD trajectories
of conformations are transformed into trajectories of these k states,
and we obtain a k x k transition probability matrix A between
these states. We score this angle 6 by min; A(i,4), ie., the
minimum self-transition probability.

Definition 2 (Mean Absolute Distance). The Mean
Absolute Distance (MAD) between two conformations, P; =
(01,02, -+ ,0:1) for i = 1,2, is defined by

k
1
MAD(Py, Py) = 1> DA(01,05),

Jj=1

where 0,5 is a torsion angle, DA(01;,02;) is the distance between
two torsion angles. Since the torsion angles are periodic with
period 27, the distance between two torsion angles (DA) is defined
by DA(@l, 02) = min{\é)l 792‘, ‘01 792+27T‘, ‘92 791 +2’/T‘}

Definition 3 (One-step Distance). The one-step distance is the
distance between the conformations in adjacent frames along the
MD trajectory.

Typically, the one-step distance can be one-step MAD,
one-step RMSD, or one-step DA.

2.4 The CAPT algorithm

Finding the stable states/structures of a biomolecule based
on the MD data, statistically, is to estimate its landscape
density function L(z) = Zle pifi(z|B;)I(x € B;), where
k is the number of stable states, {Bj,Bs, -, By} are
disjoint partitions/basins of the whole conformation space



QGe, Q2= Ule B;), p; is the probability of a conformation
belonging to basin B; such that Zle p; = 1, and f;(z|B;)
is the density function of conformations belonging to basin
B; such that fB1 f(z|B;)dx = 1. Each B; corresponds to a
stable state of the biomolecule, and the stable structure in
each basin is the one with the highest density in it.

The task of joint partitioning and density estimation is
related to the work of [49], which extended the classification
tree for regression to handle density estimation. However,
estimating L(z) is totally different from the traditional
density estimation problem due to the special underlying
property of basins that conformations within each basin
are of high dynamical similarity due to local geometrical
similarity, and the global similarity may not necessarily
lead to dynamical similarity. This special property makes
the partitions be the most important part of the landscape
density function.

Based on the previous two observations, we design an
algorithm called Conditional Angle Partition Tree (CAPT) to
estimate the partitions, which is summarized in Algorithm 1
and illustrated in Figure 1. Essentially, CAPT is similar to the
classification tree method designed originally for regression.
It goes recursively. We illustrate the basic idea of CAPT
through the example of Alanine dipeptide step by step.

Alanine dipeptide is a small biomolecule with only two
backbone torsion angles, say ¢ and . The histograms with
corresponding density functions of ¢ and ¢ are shown in
Figure 1(II), where the density functions are estimated by
the kernel method [50] based on the von Mises kernel. As
shown in the figure, 1 has two local modes (denoted by red
circles), and ¢ has three local modes. Thus, if we use ¥ to
cluster conformations by cutting the marginal distribution
of 9 at the point with lowest density between two local
modes as shown by the blue dashed line in Figure 1(II),
we get two clusters. Now, by mapping the cluster labels
of conformations onto the trajectories of conformations, we
obtain the transition matrix (see Supplementary Table 7)
between these two clusters. The partition score of 1), defined
as the minimal self-transition probability, i.e., the minimal
of diagonals of transition matrix, is 0.9728. Similarly, the
partition score of ¢ is 0.9395. Thus, in this iteration, we take
1, the angle with highest partition score, to partition the
parent cluster (all conformations in the current iteration)
into two child clusters. This is the first iteration of the
CAPT algorithm for Alanine dipeptide, i.e.,, going from
Figure 1(IIL.A) to Figure 1(IILB).

Next, CAPT takes each child cluster as a parent cluster
and applies the clustering procedure in the above until one
of the stopping criteria (see below) is meet. That is, we goes
from Figure 1(IIL.B) to Figure 1(II1.C) and (IILD). Finally,
CAPT gives us a partition tree as shown in Figure 3. In
summary, CAPT uses ) firstly to partition all conformations
into two child clusters, SO1 and S02. Next, taking the
new clusters as parent clusters, CAPT uses ¢ to partition
conformations in each new parent cluster into three child
clusters. We can see that conformations in different levels
of nodes (clusters) are of different level of local similarity.
According to our partition rule, they are also of high
dynamical similarity.

2.5 Stopping Criteria of CAPT

CAPT has three stopping criteria. (1) All torsion angles are
non-informative for clustering, that is, all torsion angles
has a unimodal distribution on each terminal node. (2)
It generates clusters that are not metastable, that is, the
minimal self-transition probability of these clusters, min; p;;,
is smaller than some threshold P. > P, > 0.5. Since for
each B;, the self-transition probability p;; is larger than the
probability of its transition to other basins. The threshold
Py can be understood as the minimal energy barrier leading
to energy wells, and P, is a cutoff of the energy landscape.
The suggested value for P, ranges from 0.6 to 0.7, and P is
usually set as 0.5 or just taken as P.. (3) It generates small
meaningless clusters. To avoid meaningless small clusters,
one may focus only on the basins with sample size larger
than sg, equally p; > po (see the definition of landscape
density L(x)). To this aim, one may stop CAPT algorithm on
a cluster with sample size smaller than a given threshold S..
Also, one may stop CAPT algorithm if partitioning a cluster
gives at least one child cluster with sample size smaller than
another threshold Sy. Note that S. and Sy are different,
although one may set S. = Sy for convenience.

2.6 Identifying Meaningful Metastable States and

Structures

For a complex biomolecule, CAPT may produce many
clusters, some of small size, some others not stable.
Thus we need a method to recognize meaningful stable
clusters within the partition tree. Recall that the number
of conformations in each cluster reversely relates to the
free energy of the cluster. That is, if a conformation
is stable (with a low free energy), there should be
many other geometrically similar conformations within its
small neighbourhood. We thus use the local density [51],
LD(z;) = Y., I(d(z;,xz;) < dp), to find meaningful
clusters, and consequently the stable structure and number
of stable states, where x; denotes the i-th conformation,
n is the number of conformations, dy is the threshold for
identifying neighborhoods, and d(-, -) is the Mean Absolute
Distance between two structures. In fact, Each frame has two
kinds of local density: the local density within the cluster it
belongs to, denoted by LDc, and the local density within
all frames of the dataset, denoted by LDa. If the clusters
are well separated, LDc equals to LDa. Thus, the difference
between LDc and LDa can be used as an index for the
quality of clusters.

3 RESULTS
3.1 The Algorithm

We propose a new method named Conditional Angle
Partition Tree (CAPT) for analyzing MD data, see Figure 1
for an overview. Intuitively, CAPT groups conformations
into metastable states by recursively using the information
from dihedral angles of the backbone chain with high
partition scores. A higher partition score implies a higher
energy barrier. The output of CAPT is a hierarchical
partition tree of the conformations in the dihedral angle
space. The boundaries between different partitions provide
the locations of free energy barriers. CAPT also reports



Fig. 1. Key ideas of Conditional Angle Partition Tree (CAPT). (l) is an
illustration of torsion angles (¢, v); () shows the marginal distributions
of torsion angles (¢, 1) of Alanine dipeptide summarized from its MD
data. As shown in the figure, 1 has two local modes (denoted by red
circles), and ¢ has three local modes. (Ill) shows an illustration of CAPT
algorithm. The torsion angle used in each iteration of the algorithm is
the one of the highest partition score within the remaining angles.

stable structures, which correspond to local minima of free
energy basins. Details on CAPT are referred to Methods.

Comparing with previous methods, CAPT has
following advantages: Firstly, CAPT operates directly
on conformations instead of on microstates, thus we
avoid the computing burden and inaccuracy caused by
K-means/K-medoids in the splitting step. This advantage
is only over the two-step clustering methods. Secondly,
by incorporating the transition probability (dynamical
similarity) into tree construction, CAPT considers
simultaneously in each iteration the dynamical similarity
and local geometrical similarity. With this feature, we
believe that similarity in kinetic (dynamic) distances
between different conformations is obtained from partial
similarity in geometric distances. Thirdly, CAPT recognizes
the number of metastable states automatically with the aid
of local density, which is proportional to the free energy
of the metastable state. However, many of the previous
methods take this unknown number as input for analysis.
Fourthly, CAPT actually performs divisive hierarchical
clustering on all conformations using both dynamic and
structural information, and thus can run in parallel,
which is different from methods based on agglomerative
clustering. Specifically, the branches of the partition tree
can be constructed in parallel. For example, we can set a
relatively higher value for P,, say 0.9, and get a tree. Next,
we run CAPT in parallel on each end node of the tree with
a smaller P, say 0.5, and combine the subtrees to get the
final partition tree. This will save computational time of
CAPT. Fifthly, Combining with results from local density
analysis, CAPT gives an informative representation of the
free energy landscape with a desired solution.

The idea of using torsion angles to represent a
biomolecules, i.e., assuming that the backbone chain
structure is the main factor for forming major energy wells,
has been used in some previous works, see for example,
[52], [53]. Although the assumption behind CAPT that the
energy wells are determined by backbone of the protein is

Fig. 2. Structure of Alanine dipeptide. In the figure, the grey, red and blue
atoms represent carbon, oxygen and nitrogen, respectively.

supported by recent results [36], [37], [39], [43], [44], [52],
it still may fail in some cases [54], [55]. In such cases,
methods such as the optimal folding coordinate [56] and
the transition disconnectivity graph [19], [20] may be tried.

3.2 Application to Alanine dipeptide

To explore the advantages of CAPT through its comparison
with PCCA, PCCA+, MPP and Gibbs sampling method,
we first apply CAPT to a benchmark dataset, the MD
dataset of Alanine dipeptide. Details of analyzing Alanine
dipeptide are presented for understanding the way that
CAPT works. Alanine dipeptide is a simple and well-
understood structure, whose molecular structure is given
in Figure 2. The MD trajectory data of Alanine dipeptide
is taken from [57], which consists of 974 20-ps NVE
simulations with conformations stored every 0.1 ps. Thus
there are 194800 conformations in the dataset. The detailed
simulation information can be found in [57].

3.2.1 Settings for Competitive Methods

Methods belonging to the two-step procedure, such
as PCCA*, PCCA+!, MPP*, TRDG, MVCA and Gibbs
sampling, have the same splitting step but different lumping
steps. To help them eliminate the inaccuracy caused by
their original splitting method on their final results, we
used a grid clustering method on the angle space (See
Supplementary Section 3.2) to cluster the conformations into
microstates. Note that the grid clustering method provides
much better clustering results than K-mean algorithm, thus
favoring these two-step methods in comparison with our
method. Here, we do not compare CAPT with APM since it
is similar to PCCA /PCCA+ with the grid clustering method
in the splitting step. Detailed settings for these four methods
are given in Supplementary Section 3.2.

3.2.2 CAPT Outperforms Competitive Methods

Alanine dipeptide has two torsion angles, ¢ and . Thus,
we can represent each conformation by these two angles,

x. The code is from MSMbuilder 2.0 [58]
t. The code is provided by Marcus Weber, author of [17]
1. The code is provided by its authors
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Fig. 4. Free energy landscape of Alanine dipeptide obtained by different
methods. Different colors in each sub-figure denote different clusters.
(A) Benchmark results [57]; (B) CAPT; (C) MPP; (D) PCCA; (E) PCCA+;
(F) Gibbs.

and it has 6 stable states with ideal landscape presented
in Figure 4A. The histograms of ¢ and v are given in
Figure 1(II) and the distribution of all conformations in
(¢,1) space is given in Supplementary Figure 3. We run
CAPT on the Alanine dipeptide data with S, = 0,5y =
500, P. = Py = 0.6 and the Gaussian kernel. A sensitivity
analysis for these settings is given in Supplementary Section
3.5. The resulting partition tree is shown in Figure 3,
which gives a estimator of partitions as (By,---,Bg) =
(5023, 5022, 5021, 5013,5012,5011) (Transition matrix
between them is shown in Supplementary Table 2). Thus,
we conclude that Alanine dipeptide has 6 metastable states,
which is consistent with the ground truth.

The free energy landscapes of Alanine dipeptide
obtained by different methods are given in Figure 4. The
corresponding transition matrix of each clustering is given
in Supplementary Table 1-6. The free energy landscape
plots in Figure 4 show that the result of CAPT is the
one most similar to the benchmark result [57]. For a

TABLE 1
ARI (with standard error in the bracket) between the benchmark
clustering and the cluster label from each method.

ARI CAPT MPP
Benchmark 0.987 (0.0005)  0.723 (0.0045)
PCCA PCCA+ Gibbs

0.906 (0.0027)  0.923 (0.0017)  0.952 (0.0011)

numerical comparison of results from different methods
with the benchmark, we use the Adjusted Rand Index (ARI)
[59] to quantify the similarity between two clusterings.
If two clustering labels (Ci,C5) are equivalent, we have
ARI(Cy, Cy) = 1. If they are totally different, ARI(C, Cs) =
0. ARIs between cluster labels obtained by CAPT, PCCA,
PCCA+, MPP, Gibbs sampling method and the benchmark
cluster labels are given in Table 1, which also shows the
corresponding standard errors estimated by bootstrapping
the MD trajectories for 100 times. Table 1 shows that
the cluster labels obtained by CAPT are the closest to
the benchmark clustering and CAPT produces statistically
significantly better ARI than other methods. The obvious
differences among the landscapes shown in Figure 4 also
support this finding. But since the difference in ARI between
CAPT and Gibbs is only 0.035, one may argue that the
difference is not scientifically meaningful. Thus, we suggest
to also compare the results from different aspects other than
ARI. As a result, CAPT performed much better on Alanine
dipeptide than PCCA, PCCA+, MPP and Gibbs sampling
method from three points of view: ARI (see Table 1), the
free energy landscape (see Figure 4) and the transition
matrix (Supplementary Table 1-6). Comparing with results
from TRDG (see Supplementary Section 3.6) and MVCA (SI
Figure 8), we arrive at the same conclusion.

In summary, CAPT shows its advantage over other
methods by incorporating the dynamical similarity into tree
construction that it is computational efficient and gives an
better estimate on number of macrostates.

3.2.3 Discussion on Results from Competitive Methods

If we simply evaluate the results by the sum or the mean
of diagonals of the transition matrix, which is the objective
function of PCCA, the results given by PCCA is the best
(see Supplementary Table 1-6). However, the free energy
landscapes shown in Figure 4 suggest that the objective
function of PCCA is ineffective. All these together suggest
that mathematical objective of PCCA and PCCA+ may not
be biological meaningful.

The Gibbs sampling method lumping the microstates
into macrostates based on Poisson model shows some
advantages over PCCA, PCCA+ and MPP as shown
in Figure 4. But when looking into the transition
matrix (Supplementary Table 6) from the Gibbs sampling
algorithm, we find that the self-transition probability of state
S5 is 0.527, which is unreasonable and may be caused by
ignoring the geometric similarity in lumping step.

The transition matrix between clusters obtained from
MPP looks unreasonable. The mean and minimal of
diagonals are as low as 0.4449 and 0.0241, respectively,
which defies the energy well explanation of a cluster.
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Fig. 5. The structure of HP35 Nle/Nle determined by x-ray
crystallography (PDB code 2F4K). The backbone is shown as cartoon.
Oxygen is colored in red, C¢ is colored in green with a number beside,
and nitrogen is colored in blue.

In addition, we can see from Figure 4(C) that some
conformations belonging to S4 are clustered into S3 by MPP,
since there is a most probable pathway that starts from
them and goes through a conformation with the lowest
free energy belonging to S3. This result suggests that the
principle used by MPP in dynamical clustering may be
problematic.

PCCA, PCCA+ and MPP can not get the reasonable
clustering labels even when we set the number of clusters
from it as the true number of clusters of Alanine dipeptide
and a better splitting of conformations into microstates.
Similar to PCCA and PCCA+, the disadvantage of Gibbs
sampling method is its requirement of a pre-defined
number of clusters. Here we set it as the true number
of clusters, however, it is unknown to us in practice.
For Alanine dipeptide, we also run PCCA+ and Gibbs
sampling algorithm on different settings of number of
clusters produced from them. The results show that these
algorithms depend strongly on the pre-defined number of
clusters. For details, we refer to Supplementary Section 3.5.

TRDG is a graph clustering algorithm, where the
energy barrier between microstates is estimated by the
minimum-cut between them in the graph. The results in
Supplementary Figure 7 show that TRDG can recognize
a part of local stable states but microstates from different
benchmark clusters are mixed up. This phenomenon is also
observed in metric disconnectivity graphs [60]. Another
important point for TRDG is that it is difficult to judge from
its results (SI Figure 7B-7E) how many metastable states are
there, whereas CAPT provides an accurate estimate. It is
well known that, disconnectivity graph is predominantly
used for visualisation purposes and is highly sensitive to the
choice of the threshold, which may explain partially its non-
ideal performance on the MD data of Alanine dipeptide.

3.3 Application to HP35 double mutant Nle/Nle

In this section, we apply CAPT to HP35 double mutant
Nle/Nle, whose structure is given in Figure 5. Its free
energy landscape has been reported in [44] based on MPP,
in [61] by both conventional and replica exchange molecular

Fig. 6. Relative free energy landscape between top 6 stable clusters with
the key energy barrier.

(56)

Fig. 7. Top 6 most stable structures (with largest LDc with dy =
0.1757350), sorted by their LDc in decreasing order from left to right
and up to below. The labels are given according to the partition tree in
Figure 6. Details are in Supplementary Material.

dynamics simulations, and in [56], [62] by constructing the
optimal reaction coordinate. The data we used here is from
[63], a = 300 us long trajectory at 380 K, which shows 140
folding and unfolding events. The data contains ~ 1.5 x 10°
snapshots with a time step of 200 ps.

This is a complex biomolecule, and CAPT may produce
many small meaningless clusters. Local density is used
to identify the stable structures and thus the number of
marcrostates. The conformation with highest local density
in the cluster is defined as the most stable one. We use
two different local densities: (1) local density within the
corresponding cluster (LDc) and (2) local density over all
conformations (LDa). If the clusters are well separated, LDc
is the same as LDa. Thus, a comparison between LDc and
LDa tells the quality of the clustering.

3.3.1 Results from CAPT

We run CAPT with P, = Py, = 0.7, S = S. = 10000
and Gaussian kernel. More discussion on selecting S,
and Sy, and the sensitivity analysis on P, are given in
Supplementary Section 4.3. The full partition tree under
this setting is presented in Supplementary Figure 15, and
the corresponding results of LDc and LDa are given
in Supplementary Table 19, where the threshold dy for
computing local density is set as 0.1757350, the 0.05%
quantile of the one-step MAD (see Methods for definition,
and details on selecting dp is given in Supplementary
Section 4.1). According to these results, we find 6 stable
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Fig. 8. The final partition tree of HP35 Nle/Nle obtained with the aid of
structures information in Figure 7 and LDc/LDa in Supplementary Table
19. The number in the parentheses is the population of the cluster.
This partition tree is a sub-tree of that in Supplementary Figure 15.
Comparing with the tree presented in Figure 6, it is clear that {S5, S6,
S4, S3} belongs to cluster L9, {S1, S2} belongs to cluster L6.

clusters, and the structures of their centers are given in
Figure 7 with the transition matrix given in Supplementary
Table 16. The structure S6, the most stable one, is exactly
the native structure shown in Figure 5. We show the main
partition tree between these 6 clusters in Figure 6, which
tells the main difference between these 6 stable structures
shown in Figure 7. More specifically, as shown in Figure 6,
the energy barrier between {S1, S2} and {S3, S4, S5, S6} is
caused by ¢»; the energy barriers between S1 and S2, S3
and S4, S5 and S6, are all caused by ¢3; and the energy
barrier between {S3, S4} and {S5, S6} is caused by ). This
information is consistent with that contained in structures
shown in Figure 7.

Since structures presented in Figure 7 are similar,
we conclude that these are mainly native structures or
intermediate structures. To fully understand the free energy
landscape of HP35, we look inside into the full partition tree
presented in Supplementary Figure 15 and the LDc/LDa
in Supplementary Table 19, and get the refined partition
tree as shown in Figure 8, which is a sub-tree of that
in Supplementary Figure 15. We show in Figure 9 three
examples of conformations in clusters L1-L5, L7 and L8. The
transition matrix between these 9 clusters (metastable states)
is shown in Table 2.

Comparing with the tree presented in Figure 6, we see
that {S5, S6, S4, S3} belongs to cluster L9, {S1, S2} belongs
to cluster L6. According to structures shown in Figure 7,
state L9 can be defined as the native state, and state L6 is
the intermediate state. In addition, according to Figure 8,
whether an unfolded conformation belonging to L4 can
evolved into a conformation in native state L9 is determined
by torsion angles {¢2, ¢s, P10} in Helix I, {¢)15} in Helix II,
{b25, P27 } in Helix 111, and t)5g in the middle of the structure
in Figure 5. Combining results in Figure 9 and Figure 8,
we see that the folding of a molecule starts from the easier
part having a lower energy barrier to the harder part with
a higher energy barrier. Furthermore, results presented in
Figure 9 and Table 2 validate the statement that geometric
similarity may not imply kinetic (dynamic) similarity, see
for example, [52].
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Fig. 9. The examples of conformations in cluster L1-L5, L7 and L8. We
present 3 examples for each cluster.

TABLE 2
Transition matrix between clusters in Figure 8

L1 L2 L3 L4 L5 L6 L7 L8 L9

L1 0.9825 0.0003 0.0011 0.0004 0.0012 0.0006 0.0039 0.0073 0.0025
L2 0.0000 0.9670 0.0007 0.0001 0.0003 0.0064 0.0057 0.0094 0.0104
L3 0.0002 0.0005 0.9830 0.0001 0.0009 0.0021 0.0047 0.0060 0.0025
L4 0.0000 0.0001 0.0001 0.9977 0.0004 0.0002 0.0004 0.0008 0.0003
L5 0.0001 0.0001 0.0006 0.0005 0.9927 0.0005 0.0017 0.0030 0.0008
L6 0.0001 0.0024 0.0008 0.0001 0.0003 0.9467 0.0214 0.0003 0.0279
L7 0.0003 0.0016 0.0014 0.0002 0.0007 0.0171 0.9668 0.0117 0.0003
L8 0.0003 0.0014 0.0009 0.0002 0.0008 0.0001 0.0062 0.9737 0.0164
L9 0.0001 0.0013 0.0003 0.0001 0.0002 0.0100 0.0001 0.0140 0.9740

3.3.2 Comparing with results from MPP

In this section, we compare the results from CAPT with
that from MPP, where the clustering results from MPP
is obtained from the authors of [44]. Table 3 shows the
maximal LDc of clusters found by MPP and CAPT (more
details are given in Supplementary Table 14), where U is
the unfolded state, I1 and I2 are the intermediate states, and
N1 and N2 are native states. From these results, we see that
the maximal LDc of cluster U and N2 found by MPP is less
than 100, which is smaller than the minimum maximal LDc
of clusters found by CAPT. This indicates that the result
obtained by MPP is somehow unreasonable. In addition,
as shown in Table 3 and Supplementary Table 14, the LDc
and LDa of the most stable structures in cluster I1 and 12
are not equal even when the threshold dy is as small as the
0.005% quantile of one-step MAD. This further indicates the
drawback of MPP.

Furthermore, we show in Table 4 the relationship
between the clusters from MPP and CAPT. According to the
results, members in clusters I1, N1, 12 and N2 mainly belong
to clusters L6 and L9, which are native (or intermediate)
metastable states. This situation is similar to that occurred
in Alanine dipeptide (see Figure 4): one metastable states
may be divided by MPP into several states (clusters).
Interestingly, members of clusters L1 - L5, L7 and L8, with
about 59.4% population, mainly belong to the cluster U,
the unfolded state. This is consistent with the partition
tree shown in Figure 8, which is a representation of free
energy landscape. According to the partition tree, we may



TABLE 3
LDc and LDa of stable conformations found by MPP and CAPT when
do = 0.1757350

MPP [44] CAPT
Cluster LDc LDa | Cluster LDc LDa
I1 6766 6854 S6 6854 6854
N1 3789 3790 S3 3662 3662
U 67 67 S1 3167 3167
12 816 839 S5 1321 1321
N2 8 8 S4 834 834
- - - S2 763 763

understand that the unfolded state can be divided into
7 unfolded sub-states. Also, one can divide, according to
the full partition tree in SI Figure 16, the native cluster
L9 further to see detailed free energy landscape for the
native state. This is consistent with the fact that the free
energy landscape is rugged. The members in cluster U are
separated in clusters L1-L9, which explains why the most
stable structure in U found by local density is different from
that in [44]. Importantly, many conformations belong to the
native state are recognized mistakenly by MPP as unfolded
states (see Table 3 and 4 , Figure 6 and 8).

In summary, CAPT gives an informative representation
of the free energy landscape, and the key difference between
each cluster in the partition tree is well understood.
Importantly, with the aid of local density analysis, the free
energy landscape obtained from CAPT can explore the
landscape with a required resolution at the part of interest.
For example, we can just take clusters L1-L5, L7 and L8 as
one unfolded state or treat them as different unfolded states.
Also, we may take 56 as the native state, and treated S1-S5
as intermediate states or just take L9 as the native state and
L6 as the intermediate state.

TABLE 4
Number of conformations in intersection between clusters from MPP
and CAPT

L1 L2 L3 L4 L5 L6 L7 L8 L9
In 3 114 576 18 33 5911 11 40 115907
N1 0 30 190 0 5 29142 4 9 84056
U 12828 57139 57772 84739 92738 87625 203529 382920 172981
12 3 29 2412 1 5 31336 10 13 56452
N2 120 40 8 241 888 7649 1 4 21860

4 CONCLUSION

We introduced a new method for deciphering the
free energy landscape of the conformational space of
biomolecules. Our method makes use of both the
three dimensional structure of each conformation and
the dynamic information between conformations to
group conformations into metastable states. A special
characteristics of our new method is its usage of the local
structure information, more specifically the discriminant
angles, to construct a classification tree. The resulting
clusters have both high local densities and low between-
group moves, which fits the concept of energy wells. When
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compared with other methods, our method achieved better
results as judged by the benchmark or the local density of
stable structures.

CAPT aims to learn the metastable states of biomolecules
(proteins) from MD data. Metastable states are defined
as states with a self-transition probability larger than a
given threshold P, € [0.5,1]. Compared with popular two-
step procedures such as PCCA/PCCA+, MPP and Gibbs
sampling method, CAPT works on a different framework.
Specifically, those two-step methods take the problem
of exploring the free energy landscape as a clustering
problem (clustering conformations into macrostates by two
steps), while CAPT takes it more like a non-supervised
classification problem. The advantage of this new view is
that it avoids the local optima of K-means algorithm that
may result in bad microstates for complex biomolecules, and
the tedious calculation of K-means. Importantly, CAPT has
many other advantages over the other methods. Molecular
dynamical simulations is an important technique for
understanding big biomolecules but it is time-consuming.
Sometimes, other methods like discrete path sampling [64]
are used for sampling the trajectories, where CAPT is still
applicable.

For complex molecules or proteins such as HP35, there
is no ground truth to compare with. Researchers tend to
validate the result in terms of self-consistency. For example,
we validate our results and compare them with those in
[44] by using the local density within the cluster (LD.) and
local density over all conformations (LD,,) of the metastable
states (see Table 3), and using the simple principle that a
metastable state has a high local density. A crosscheck of the
outputs from other related energy landscape studies might
be possible, but challenging to be objective in the absent of
ground truth. Also, benchmark datasets are in great need for
understanding and comparing the performance of different
methods, which is an important research topic for this area.

Currently our method is an intuitive data-driven
approach. One way to improve over our method is to
introduce a generative probabilistic model to describe
the free energy landscape more principally, which needs
detailed modelling of the global similarity and the local
similarity among conformations. The energy barrier casts a
non-continuous factor to the model, which will be the major
challenge for the probabilistic modeling. Furthermore, the
detail quantification of free energy minima or barrier might
be pursued but not dealt in the current paper. These
interesting topics are left as the future work.

DATA AVAILABILITY

Trajectory data of HP35 Nle/Nle can be obtained
from https:/ /www.deshawresearch.com/downloads/
download_trajectory_pnas2012.cgi/ with help from authors
of [63].

CODE AVAILABILITY

The code for CAPT algorithm is available at https://
jlangdata.github.io/resources/capt.zip.
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