# Supplemental Material for Revealing Free Energy Landscape from MD Data via Conditional Angle Partition Tree

Hangjin Jiang, Han Li, Wing Hung Wong, and Xiaodan Fan

# 1 OVERVIEW OF MD DATA AND TRANSITION MATRIX

Figure 1 shows an overview of MD trajectory data and related transition matrix in two-step clustering procedure.

## 2 R CODE FOR CAPT ALGORITHM

CAPT algorithm is implemented in R, which is available at https://jiangdata.github.io/resources/capt.zip. We provide an example in our R code 'capt.zip', together with a tutorial file, to further illustrate how to use our R code.

# **3 DETAILS ABOUT ANALYZING ALANINE DIPEPTIDE**

## 3.1 Visualization of Alanine dipeptide data

Figure 2 shows the histograms of angles  $(\psi, \phi)$  of Alanine dipeptide. Figure 3 shows the distribution of the frames of Alanine dipeptide data in the angle phase.

## 3.2 Settings for PCCA, PCCA+, MPP and Gibbs

When using PCCA/PCCA+, one should specify the range of the number of clusters, i.e., the maximal number of clusters  $n_{max}$  and minimal number of clusters  $n_{min}$ . We set  $n_{max} = n_{min} = 6$  for PCCA, and  $n_{max} = 9$  and  $n_{min} = 3$  for PCCA+. The Gibbs sampling algorithm is also run with the true number of clusters.

To use PCCA, PCCA+, MPP and Gibbs sampling method, one has to cluster frames into microstates first. In the simple case of Alanine dipeptide which only has two torsion angles, we use a grid method in the angle space to group frames to microstates. More specifically, we partition the whole space  $[-\pi, \pi] \times [-\pi, \pi]$  into a  $80 \times 80$  grid, and take each small grid as a microstate. The center of each small grid cell is treated as the center of this microstate. In fact, by

- Hangjin Jiang is with the Center for Data Science, Zhejiang University.
- Han Li is with College of Economics, Shenzhen University.
- Wing Hung Wong is with the Department of Statistics, Stanford University. E-mail:whwong@stanford.edu
- Xiaodan Fan is with the Department of Statistics, The Chinese University of Hong Kong E-mail: xfan@cuhk.edu.hk



Fig. 1. MD trajectory data and related transition matrix. (A) shows the trajectories of conformations (denoted by empty circles) obtained from molecular dynamics simulation. Note that circles in different color denote different conformations in different trajectories. (B) shows the trajectories of microstates (denoted by solid colored circles) by mapping conformations to microstates through geometrical clustering. (C) shows the transition matrix,  $T(m \times m)$ , between microstates obtained from trajectories of conformations in sub-figure (B), where m, usually no more than thousands, is the number of microstates obtained by geometrical clustering in the splitting step. The entry of this matrix,  $T_{ij}$ , is the number of jumping from microstate i to microstate j along the trajectories. That is,  $T_{ij}$  is the number of times we observe in all trajectories that the microstate i is followed by microstate j. (D) shows the transition matrix,  $K(n \times n)$ , between conformations obtained from trajectories of conformations in sub-figure (A), where n, usually at the magnitude of millions, is the number of conformations observed in MD simulations. The entry of this matrix,  $K_{ij}$ , is the counts of jumping from conformation i to conformation j along the trajectories. That is,  $K_{ij}$  is the number of times we observe in all trajectories that the conformation i is followed by conformation j. Since any two conformations along the trajectories are different, L(s-1) of the entries of K are 1, and others are 0, thus non-informative for detecting stable structures, where L is the number of trajectories, s is the number of conformations in each trajectory, and  $n = L \times s.$ 

dividing the  $(\phi, \psi)$  space into 6400 bins, we get many empty bins and remove them from our analysis. We take each nonempty bin as a microstate, and map each conformation in the trajectory to the corresponding microstate, then we get trajectories of microstates, and the transition matrix between microstates.



Fig. 2. Histograms of angles ( $\psi$ ,  $\phi$ ) of Alanine dipeptide. (A) and (B) are the histograms of  $\psi$  and  $\phi$ , respectively. (C) and (D) are the histograms of the one-step distance of  $\psi$  and  $\phi$ , respectively. In (A) and (B), the blue dashed lines show the partition positions found by CAPT. In (C) and (D), the blue and red dashed lines correspond to the 95% and 50% quantiles of the distribution, respectively.



Fig. 3. Scatter plot of frames of Alanine dipeptide data in the angle phase. The Alanine dipeptide is a small biomolecule with only two torsion angles, say,  $\phi$  and  $\psi$ , and its free energy landscape is fully determined by these two angles.

#### 3.3 Transition matrix from different methods

Table 1 shows the transition matrix of the benchmark clusters of Alanine dipeptide, Table 2 shows results from CAPT, Table 4 shows results from PCCA, Table 3 shows that of clusters of Alanine dipeptide obtained by MPP, Table 5 show results from PCCA+, Table 6 show results from Gibbs sampling method.

TABLE 1 Transition matrix of the benchmark clusters of Alanine dipeptide

|                              | S1                           | S2        | S3       | S4     | S5     | S6     |  |  |  |
|------------------------------|------------------------------|-----------|----------|--------|--------|--------|--|--|--|
| S1                           | 0.9457                       | 0.0477    | 0.0062   | 0.0004 | 0.0000 | 0.0000 |  |  |  |
| S2                           | 0.0609                       | 0.9365    | 0.0004   | 0.0021 | 0.0000 | 0.0002 |  |  |  |
| S3                           | 0.0403                       | 0.0021    | 0.8939   | 0.0636 | 0.0000 | 0.0000 |  |  |  |
| S4                           | 0.0020                       | 0.0090    | 0.0526   | 0.9356 | 0.0008 | 0.0000 |  |  |  |
| S5                           | 0.0013                       | 0.0013    | 0.0000   | 0.0098 | 0.9718 | 0.0158 |  |  |  |
| S6                           | 0.0000                       | 0.0401    | 0.0000   | 0.0000 | 0.0519 | 0.9080 |  |  |  |
| Sur                          | n of diag                    | gonals: 5 | 5.591479 |        |        |        |  |  |  |
| Mean of diagonals: 0.9319131 |                              |           |          |        |        |        |  |  |  |
| Mi                           | Minimal of diagonals: 0.8939 |           |          |        |        |        |  |  |  |
|                              |                              |           |          |        |        |        |  |  |  |

TABLE 2 Transition matrix between clusters of Alanine dipeptide obtained by CAPT

|                             | S011      | S012       | S013   | S021   | S022   | S023   |  |  |
|-----------------------------|-----------|------------|--------|--------|--------|--------|--|--|
| S011                        | 0.9461    | 0.0475     | 0.0000 | 0.0061 | 0.0003 | 0.0000 |  |  |
| S012                        | 0.0613    | 0.9360     | 0.0002 | 0.0004 | 0.0021 | 0.0000 |  |  |
| S013                        | 0.0027    | 0.0163     | 0.9074 | 0.0000 | 0.0000 | 0.0736 |  |  |
| S021                        | 0.0407    | 0.0019     | 0.0000 | 0.8932 | 0.0642 | 0.0000 |  |  |
| S022                        | 0.0018    | 0.0095     | 0.0000 | 0.0515 | 0.9364 | 0.0009 |  |  |
| S023                        | 0.0000    | 0.0000     | 0.0975 | 0.0000 | 0.0176 | 0.8848 |  |  |
| Sum                         | of diago: | nals: 5.50 | 0389   |        |        |        |  |  |
| Mean of diagonals: 0.917315 |           |            |        |        |        |        |  |  |
| Minir                       | nal of di | agonals:   | 0.8848 |        |        |        |  |  |

### 3.4 Discussion

If we compare the energy landscape of benchmark clusters of Alanine dipeptide with that obtained by CAPT, although ARI is as high as 0.987002, we can still find a small difference: the boundary between S013 and S023 in Figure 4(B) is a bit higher than that between S5 and S6 in Figure 4(A). This small difference is due to the order of angles used for partitioning. Table 7 gives the transition matrix when using different angles in the first step of CAPT for Alanine dipeptide. The  $\psi$  column is the transition matrix between clusters obtained by partitioning all frames into 2 clusters according to the distribution of  $\psi$ , where the partition score is 0.9728. The  $\phi$  column is the transition matrix between clusters obtained by partitioning all frames into 3 clusters according to the distribution of  $\phi$ , where the partition score is 0.9395. Thus CAPT prefers using  $\psi$  to partition in the first step. That means that CAPT is a bit greedy in transition probability, which leads to the small discrepancy from the benchmark.

Alternatively, if CAPT had used  $\phi$  first in constructing the partition tree, we would get the energy landscape as shown in Figure 4, which would be closer to the benchmark in Figure 4(A) (ARI=0.9873). The corresponding transition matrix is given in Table 8. This implies that there is room to improve the performance of CAPT if we can find a more suitable partition score.

#### 3.5 Sensitivity Analysis

As we can see from the results of PCCA+ in Figure 4, PCCA+ overestimates the number of clusters under the setting in Section 2.2 of this Supplementary Material. We try another setting for PCCA+,  $n_{max} = 5$  and  $n_{min} = 7$ , denoted as PCCA+'. We also run the Gibbs sampling algorithm with 5 and 7 clusters, denoted by Gibbs' and

TABLE 3 Transition matrix between clusters of Alanine dipeptide obtained by MPP

|                              | S0        | S1        | S2        | S3     | S4     | S5     |  |  |
|------------------------------|-----------|-----------|-----------|--------|--------|--------|--|--|
| S0                           | 0.0526    | 0.3289    | 0.0000    | 0.1447 | 0.4342 | 0.0395 |  |  |
| S1                           | 0.0013    | 0.8124    | 0.0001    | 0.0460 | 0.1391 | 0.0011 |  |  |
| S2                           | 0.0000    | 0.2778    | 0.0556    | 0.6667 | 0.0000 | 0.0000 |  |  |
| S3                           | 0.0001    | 0.0159    | 0.0002    | 0.8503 | 0.1335 | 0.0000 |  |  |
| S4                           | 0.0003    | 0.0330    | 0.0000    | 0.0918 | 0.8745 | 0.0005 |  |  |
| S5                           | 0.0241    | 0.3012    | 0.0000    | 0.0361 | 0.6145 | 0.0241 |  |  |
| Sur                          | n of diag | gonals: 2 | .669393   |        |        |        |  |  |
| Mean of diagonals: 0.4448989 |           |           |           |        |        |        |  |  |
| Mir                          | nimal of  | diagona   | ls: 0.024 | 1      |        |        |  |  |
|                              |           |           |           |        |        |        |  |  |

TABLE 4 Transition matrix between clusters of Alanine dipeptide obtained by PCCA

|     | S1                           | S2        | S3      | S4     | S5     | S6     |  |  |
|-----|------------------------------|-----------|---------|--------|--------|--------|--|--|
| S1  | 0.9352                       | 0.0003    | 0.0018  | 0.0000 | 0.0000 | 0.0626 |  |  |
| S2  | 0.0477                       | 0.9131    | 0.0000  | 0.0068 | 0.0324 | 0.0000 |  |  |
| S3  | 0.0042                       | 0.0000    | 0.9752  | 0.0000 | 0.0004 | 0.0202 |  |  |
| S4  | 0.0000                       | 0.0032    | 0.0000  | 0.9104 | 0.0816 | 0.0048 |  |  |
| S5  | 0.0000                       | 0.0269    | 0.0175  | 0.0672 | 0.8884 | 0.0000 |  |  |
| S6  | 0.0508                       | 0.0000    | 0.0068  | 0.0000 | 0.0000 | 0.9424 |  |  |
| Sur | n of diag                    | gonals: 5 | .564797 |        |        |        |  |  |
| Me  | Mean of diagonals: 0.9274662 |           |         |        |        |        |  |  |
| Mi  | Minimal of diagonals: 0.8884 |           |         |        |        |        |  |  |
|     | _                            |           |         |        |        |        |  |  |



Fig. 4. Energy landscape of Alanine dipeptide obtained from CAPT by using firstly  $\phi$  to partition the angle space.

Gibbs". Transition matrice from PCCA+', Gibbs' and Gibbs" are shown in Table 9, Table 10 and Table 11. The clustering results are shown in Figure 5. All these results show that both PCCA+ and Gibbs sampling algorithm depend strongly on the pre-selected number of clusters. However, the number of stable states (clusters) is usually unknown to us and it is the key quantity to be estimates from the data.

As reported in [2], [3], [4], Dihedral PCA gives clear energy landscape of biomolecules. However, while we try it on Alanine dipeptide, its partitioning is not clear as shown in Figure 6.

For sensitivity analysis of our algorithm, we check the effect of parameters  $P_0$  and  $S_0$  as well as the kernel

| TABLE 5                                                             |
|---------------------------------------------------------------------|
| Transition matrix between clusters of Alanine dipeptide obtained by |
| PCCA+                                                               |

|    | S1                           | S2       | S3        | S4     | S5     | S6     | S7     | S8     | S9     |
|----|------------------------------|----------|-----------|--------|--------|--------|--------|--------|--------|
| S1 | 0.7667                       | 0.1333   | 0.0000    | 0.1000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| S2 | 0.0096                       | 0.9349   | 0.0096    | 0.0145 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0313 |
| S3 | 0.0000                       | 0.0045   | 0.8649    | 0.1194 | 0.0000 | 0.0000 | 0.0000 | 0.0068 | 0.0045 |
| S4 | 0.0030                       | 0.0089   | 0.0523    | 0.9211 | 0.0000 | 0.0148 | 0.0000 | 0.0000 | 0.0000 |
| S5 | 0.0000                       | 0.0000   | 0.0000    | 0.0000 | 0.6736 | 0.0412 | 0.0659 | 0.1643 | 0.0550 |
| S6 | 0.0000                       | 0.0000   | 0.0000    | 0.0009 | 0.0069 | 0.9344 | 0.0539 | 0.0003 | 0.0037 |
| S7 | 0.0000                       | 0.0000   | 0.0000    | 0.0000 | 0.0144 | 0.0596 | 0.8945 | 0.0296 | 0.0019 |
| S8 | 0.0000                       | 0.0000   | 0.0000    | 0.0000 | 0.0052 | 0.0000 | 0.0046 | 0.9419 | 0.0483 |
| S9 | 0.0000                       | 0.0001   | 0.0000    | 0.0000 | 0.0022 | 0.0009 | 0.0005 | 0.0601 | 0.9361 |
| Su | m of dia                     | gonals:  | 7.86813   |        |        |        |        |        |        |
| Me | Mean of diagonals: 0.8742366 |          |           |        |        |        |        |        |        |
| Mi | nimal o                      | f diagor | nals: 0.6 | 736    |        |        |        |        |        |

TABLE 6 Transition matrix between clusters of Alanine dipeptide obtained by Gibbs Sampling method

|    | S0                           | S1      | S2     | S3     | S4     | S5     |  |  |  |
|----|------------------------------|---------|--------|--------|--------|--------|--|--|--|
| S0 | 0.9349                       | 0.0012  | 0.0018 | 0.0605 | 0.0001 | 0.0015 |  |  |  |
| S1 | 0.0058                       | 0.8783  | 0.0666 | 0.0443 | 0.0002 | 0.0047 |  |  |  |
| S2 | 0.0073                       | 0.0562  | 0.9313 | 0.0029 | 0.0010 | 0.0013 |  |  |  |
| S3 | 0.0477                       | 0.0069  | 0.0007 | 0.9429 | 0.0000 | 0.0018 |  |  |  |
| S4 | 0.0033                       | 0.0020  | 0.0113 | 0.0020 | 0.9515 | 0.0299 |  |  |  |
| S5 | 0.1374                       | 0.0640  | 0.0284 | 0.1919 | 0.0509 | 0.5273 |  |  |  |
| Su | m of dia                     | gonals: | 5.1662 |        |        |        |  |  |  |
| Me | Mean of diagonals: 0.8610    |         |        |        |        |        |  |  |  |
| Mi | Minimal of diagonals: 0.5273 |         |        |        |        |        |  |  |  |
|    |                              |         |        |        |        |        |  |  |  |



Fig. 5. Clustering result of Alanine dipeptide from PCCA+' (A), Gibbs' (B) and Gibbs'' (C).



Fig. 6. The effect of Dihedral PCA on Alanine dipeptide. We apply Dihedral PCA to the Alanine dipeptide data, but do not see any pattern explored by PCA.

function while applying CAPT on Alanine dipeptide MD data. For the kernel function, we tried different kernel functions, such as Gaussian, von Mises and Epanechnikov,

TABLE 7 Transition matrix when using different partition schemes in the first step

|    | $\psi$ |        |    |        | $\phi$ |        |
|----|--------|--------|----|--------|--------|--------|
|    | S1     | S2     |    | S1     | S2     | S3     |
| S1 | 0.9949 | 0.0051 | S1 | 0.9496 | 0.0503 | 0.0000 |
| S2 | 0.0272 | 0.9728 | S2 | 0.0602 | 0.9395 | 0.0003 |
|    | -      | -      | S3 | 0.0015 | 0.0174 | 0.9811 |

TABLE 8 Transition matrix between clusters when first using  $\phi$  to partition in CAPT

|                             | S011                       | S012       | S021   | S022   | S031   | S032   |  |  |  |  |
|-----------------------------|----------------------------|------------|--------|--------|--------|--------|--|--|--|--|
| S011                        | 0.9459                     | 0.0060     | 0.0476 | 0.0005 | 0.0000 | 0.0000 |  |  |  |  |
| S012                        | 0.0415                     | 0.8920     | 0.0017 | 0.0647 | 0.0000 | 0.0000 |  |  |  |  |
| S021                        | 0.0614                     | 0.0003     | 0.9361 | 0.0021 | 0.0000 | 0.0002 |  |  |  |  |
| S022                        | 0.0021                     | 0.0517     | 0.0095 | 0.9357 | 0.0009 | 0.0000 |  |  |  |  |
| S031                        | 0.0007                     | 0.0000     | 0.0000 | 0.0106 | 0.9774 | 0.0113 |  |  |  |  |
| S032                        | 0.0045                     | 0.0000     | 0.0403 | 0.0000 | 0.0336 | 0.9217 |  |  |  |  |
| Sum o                       | Sum of diagonals: 5.608926 |            |        |        |        |        |  |  |  |  |
| Mean of diagonals: 0.934821 |                            |            |        |        |        |        |  |  |  |  |
| Minim                       | nal of diag                | onals: 0.8 | 920    |        |        |        |  |  |  |  |

with  $S_0 = 500$ ,  $S_c = 0$ ,  $P_c = P_0 = 0.6$ . The results are similar as shown by the high ARI values in Table 12. For  $S_0$ , since it is the minimal size of a cluster to be recognized as a meaningful one, results won't change as long as  $S_0$  is less than the minimal size of the clusters that we get. For  $P_0$ , we get the same result for any  $P_0$  within (0.6, 0.75).

### 3.6 Results from TRDG and MVCA

## Results from TRDG

In this section, we show the result of applying TRDG to alanine dipeptide. We follow the steps in [5]: (1) In clustering step, microstates are obtained by grid clustering (see Section 3.2); (2) Estimating the free energy of each microstates  $F_i \sim -kT \ln(Z_i)$  [5], with  $Z_i$  being the number of times the system visited the microstate; (3) Estimating the energy barrier  $F_{ij} \sim -kT \ln(Z_{ij})$  [5] between microstates, where  $Z_{ij}$  is the minimum cut between microstates found by using Gomory-Hu algorithm implemented in the function "gomory\_hu\_tree" from the Python package "igraph"\*; (4) Starting with the lowest energy barrier  $F_{ij}$ , we construct the disconnectivity graph by connecting successively microstates in order of increasing  $F_{ij}$ . This step clusters microstates by using hierarchical clustering with single linkage.

To better illustrate the behavior of TRDG on alanine dipeptide, we construct TRDG based on microstates from grids with different sizes, i.e, a  $10 \times 10$  grid, a  $20 \times 20$  grid and an  $80 \times 80$  grid. Figure 7 shows the results. Figure 7(A) shows the benchmark clustering results [6] of microstates defined by a  $10 \times 10$  grid. Note that ideally a  $10 \times 10$  grid will give 100 clusters (microstates); however, some of them are empty, which result in 90 non-empty clusters (microstates) as shown in Figure 7(A). The numbers from 1 to 90 are the indexes of microstates, and their locations denote the centers of the corresponding microstates. Figure 7(B)

TABLE 9 Transition matrix between clusters of Alanine dipeptide obtained by PCCA+'

|                              | S1         | S2          | S3     | S4     | S5     |  |  |
|------------------------------|------------|-------------|--------|--------|--------|--|--|
| S1                           | 0.9049     | 0.0616      | 0.0000 | 0.0000 | 0.0335 |  |  |
| S2                           | 0.0257     | 0.9592      | 0.0113 | 0.0008 | 0.0030 |  |  |
| S3                           | 0.0000     | 0.0005      | 0.9591 | 0.0257 | 0.0147 |  |  |
| S4                           | 0.0000     | 0.0001      | 0.0668 | 0.5796 | 0.3535 |  |  |
| S5                           | 0.0001     | 0.0000      | 0.0025 | 0.0241 | 0.9732 |  |  |
| Sun                          | n of diago | nals: 4.370 | 5039   |        |        |  |  |
| Mean of diagonals: 0.8752078 |            |             |        |        |        |  |  |
| Min                          | imal of di | iagonals: ( | 0.5796 |        |        |  |  |
|                              |            |             |        |        |        |  |  |

TABLE 10 Transition matrix between clusters of Alanine dipeptide obtained by Gibbs'

|                           | S0         | S1          | S2     | S3     | S4     |  |  |
|---------------------------|------------|-------------|--------|--------|--------|--|--|
| S0                        | 0.2867     | 0.1629      | 0.2686 | 0.2242 | 0.0576 |  |  |
| S1                        | 0.0048     | 0.9417      | 0.0037 | 0.0013 | 0.0486 |  |  |
| S2                        | 0.0256     | 0.0112      | 0.9497 | 0.0115 | 0.0019 |  |  |
| S3                        | 0.3437     | 0.0608      | 0.1761 | 0.3414 | 0.0780 |  |  |
| S4                        | 0.0021     | 0.0609      | 0.0008 | 0.0017 | 0.9345 |  |  |
| Sun                       | n of diago | nals: 3.454 | 40     |        |        |  |  |
| Mean of diagonals: 0.6908 |            |             |        |        |        |  |  |
| Min                       | imal of di | iagonals: ( | 0.2867 |        |        |  |  |
|                           |            |             |        |        |        |  |  |

shows the TRDG <sup>†</sup> results based on microstates defined in Figure 7(A). As shown in Figure 7(B), TRDG correctly recognized the microstates 31, 83, 75 and 72 as local stable states. However, microstates 72 and 83 should not be clustered separately since they are actually from the same cluster S1. In addition, we represent the TRDG results in Figure 7(B) as a phylogenetic tree shown in Figure 7(C), which contains the same clustering structure as the one in (B), and is easier to read with the label coloring. As shown in Figure 7(C), TRDG does not perform well on this dataset in terms of clustering, since the benchmark clusters are mixed up. Figure 7(D) and Figure 7(E) shows the TRDG results based on microstates defined by a 20  $\times$  20 grid and an 80  $\times$  80 grid, respectively. Since we care more about the performance of TRDG on clustering, we only show the phylogenetic tree representation of the TRDG for presenting clearly the cluster structure. By refining the microstates, the clustering structure from TRDG is not improved as shown in Figure 7(D & E).

Note that we compare different methods based on microstates defined by an  $80 \times 80$  grid. According to the results in SI Figure 7(E) and Figure 4 in the main paper, TRDG did not performance well in terms of clustering.

### Results from MVCA

In this section, we show the result of applying TRDG to alanine dipeptide. We follow the steps in [7]: (1) using symmetric Jensen-Shannon divergence to measure the similarity between microstates; (2) using agglomerative clustering with Wards minimum variance criterion to cluster microstates into macrostates (metastable states), and cutting the hierarchical clustering tree to give 6 clusters. The results are show in Figure 8.

<sup>†.</sup> The disconnectivity graph is plotted by using the package "disconnectionDPS" downloaded from http://www-wales.ch.cam.ac. uk/software.html



Fig. 7. Transition disconnectivity graph (TRDG) of alanine dipeptide. The y-axis for (B-E) shows the free energy from low to high. (A) A  $10 \times 10$  grid generates 90 non-empty microstates from 6 benchmark clusters (S1-S6) with cluster color code at the top. The numbers located at the center of each microstate are the indexes of microstates. (B) TRDG results with microstates defined by (A). The label of each node corresponds to the index of the microstate in (A). (C) Phylogenetic tree representation of the TRDG results in (B). It contains the same information in (B), but with extra coloring for the labels. The label of each node corresponds to the index of the microstate in (A). (D) Phylogenetic tree representation of the TRDG for microstates defined by a  $20 \times 20$  grid. The color of labels corresponds to the cluster color in (A). (E) Phylogenetic tree representation of the TRDG for microstates defined by an  $80 \times 80$  grid. The color of labels corresponds to the cluster color in (A).

## 4 DETAILS ABOUT ANALYZING HP35 NLE/NLE

## 4.1 The value of $d_0$

We applied CAPT on the MD data of HP35 Nle/Nle by using  $P_0=0.7, P_c=0.95, S_0=500, S_c=10000$  , and the

Gaussian kernel. The partition tree is shown in Figure 9. We then tried 5 different values for  $d_0$  to compute the LDc and

TABLE 11 Transition matrix between clusters of Alanine dipeptide obtained by Gibbs"

|     | S0                           | S1        | S2     | S3     | S4     | S5     | S6     |  |  |
|-----|------------------------------|-----------|--------|--------|--------|--------|--------|--|--|
| S0  | 0.9258                       | 0.0055    | 0.0045 | 0.0030 | 0.0035 | 0.0562 | 0.0015 |  |  |
| S1  | 0.0015                       | 0.9337    | 0.0021 | 0.0010 | 0.0607 | 0.0008 | 0.0003 |  |  |
| S2  | 0.1087                       | 0.2027    | 0.2510 | 0.1638 | 0.0792 | 0.1329 | 0.0617 |  |  |
| S3  | 0.0502                       | 0.0774    | 0.1363 | 0.2846 | 0.2388 | 0.0785 | 0.1341 |  |  |
| S4  | 0.0008                       | 0.0477    | 0.0007 | 0.0024 | 0.9418 | 0.0062 | 0.0004 |  |  |
| S5  | 0.0670                       | 0.0044    | 0.0072 | 0.0054 | 0.0416 | 0.8740 | 0.0004 |  |  |
| S6  | 0.0182                       | 0.0166    | 0.0363 | 0.0979 | 0.0269 | 0.0047 | 0.7994 |  |  |
| Sur | n of diag                    | gonals: 5 | 5.0102 |        |        |        |        |  |  |
| Me  | Mean of diagonals: 0.7157    |           |        |        |        |        |        |  |  |
| Mi  | Minimal of diagonals: 0.2510 |           |        |        |        |        |        |  |  |
|     |                              |           |        |        |        |        |        |  |  |

TABLE 12 ARI between cluster labels resulted from different kernel functions for analyzing Alanine dipeptide

| ARI          | von Mises | Epanechnikov |
|--------------|-----------|--------------|
| Gaussian     | 0.995622  | 0.9953416    |
| Epanechnikov | 0.9909818 | -            |



Fig. 8. Clustering results of alanine dipeptide from MVCA. Different colors present different clusters.

LDa values for the obtained clusters. Results are given in Table 13. We find that the order of the maximal LDc of these clusters do not vary with  $d_0$ . However, the stable structure, i.e., the frame with maximal LDc in each cluster, may vary with  $d_0$ , as shown in Figure 10. In the figure, the structures with the same color in each row are exactly the same frame. The MAD between the center of C39 under case B and case C is 0.1727754; The center of each cluster does not vary with  $d_0$ , when  $d_0 \leq 0.1972243$ , and we set  $d_0 = 0.1757350$ .

#### 4.2 Comparison with MPP

LDs of clusters obtained by MPP<sup>‡</sup> are given in Table 14. Corresponding structures with the maximal LDc in each cluster are given in Figure 11. We find that the LDc's of cluster U and N2 are 67 and 8 respectively when  $d_0 = 0.1757350$ , which are smaller than the 6-th most stable cluster found by CAPT (LDc=763).

| TABLE 13                                                                        |
|---------------------------------------------------------------------------------|
| The maximal local density LDc&LDa of each CAPT cluster calculated               |
| using different $d_0$ . ST stands for similarity threshold, Q. is the short for |
| quantile.                                                                       |

| ST              | $d_0$  | =      | $d_0$ | =     | $d_0$ | =     | $  d_0$ | =     | $d_0$ | =     |
|-----------------|--------|--------|-------|-------|-------|-------|---------|-------|-------|-------|
|                 | 0.341  | 8513   | 0.231 | 8932  | 0.197 | 2243  | 0.175   | 57350 | 0.159 | 94225 |
| Ο.              | (50    | )%)    | (5)   | %)    | (0.   | 5%)   | (0.0    | (5%)  | (0.00 | )5%)  |
|                 | LDc    | I Da   | IDc   | I Da  | LDc   | I Da  | I Dc    | I Da  | I Dc  | I Da  |
| $\overline{C1}$ | 12     | 12     | 2     | 2     | 200   | 200   | 1       | 1     | 1     | 1     |
| CI              | 12     | 12     | 3     | 5     | 2     | 2     |         | 1     | 1     | 1     |
| C2              | 46     | 46     | 3     | 3     | 1     | 1     |         | 1     | 1     | 1     |
| C3              | 67     | 67     | 4     | 4     | 1     | 1     | 1       | 1     | 1     | 1     |
| C4              | 22     | 23     | 2     | 2     | 1     | 1     | 1       | 1     | 1     | 1     |
| C5              | 24     | 24     | 3     | 3     | 1     | 1     | 1       | 1     | 1     | 1     |
| C6              | 36     | 36     | 1     | 4     | 1     | 1     | 1       | 1     | 1     | 1     |
| C7              | 22     | 22     | 2     | 2     | 2     | 2     | 1       | 1     | 1     | 1     |
| C/              | 33     | 33     | 3     |       | 2     | 2     |         | 1     | 1     | 1     |
| C8              | 48     | 48     | 4     | 4     | 1     | 1     | 1       | 1     | 1     | 1     |
| C9              | 180    | 220    | 42    | 42    | 6     | 6     | 3       | 3     | 1     | 1     |
| C10             | 22     | 22     | 2     | 2     | 2     | 2     | 1       | 1     | 1     | 1     |
| C11             | 15     | 15     | 3     | 3     | 1     | 1     | 1       | 1     | 1     | 1     |
| C12             | 28     | 28     | 3     | 3     | 2     | 2     | 1       | 1     | 1     | 1     |
| C12             | 20     | 20     | 7     | 7     | 2     | 2     | 1       | 1     | 1     | 1     |
| C15             | 2.5    | 23     |       |       | 2     | 4     | 1       | 1     | 1     | 1     |
| C14             | 19     | 19     | 3     | 3     | 1     | 1     |         | 1     | 1     | 1     |
| C15             | 46     | 46     | 3     | 3     | 1     | 1     | 1       | 1     | 1     | 1     |
| C16             | 35     | 35     | 5     | 5     | 2     | 2     | 2       | 2     | 1     | 1     |
| C17             | 552    | 1322   | 61    | 66    | 12    | 12    | 2       | 2     | 1     | 1     |
| C18             | 46     | 50     | 6     | 6     | 1     | 1     | 1       | 1     | 1     | 1     |
| C10             | 21     | 22     | 6     | 6     | 1     | 1     | 1       | 1     | 1     | 1     |
| C19             | 51     | 52     | 10    | 10    |       | 1     |         | 1     | 1     | 1     |
| C20             | 80     | 80     | 12    | 12    | 3     | 3     |         | 1     | 1     | 1     |
| C21             | 103    | 103    | 22    | 22    | 4     | 4     | 1       | 1     | 1     | 1     |
| C22             | 37     | 50     | 5     | 5     | 2     | 2     | 1       | 1     | 1     | 1     |
| C23             | 47     | 47     | 4     | 4     | 2     | 2     | 1       | 1     | 1     | 1     |
| C24             | 69     | 69     | 7     | 7     | 2     | 2     | 2       | 2     | 1     | 1     |
| C25             | 89     | 92     | 16    | 16    | 3     | 3     | 1       | 1     | 1     | 1     |
| C26             | 62     | 62     | 2     | 2     | 1     | 1     | 1       | 1     | 1     | 1     |
| C20             | 02     | 02     | 5     | 5     |       | 1     |         | 1     | 1     | 1     |
| C2/             | /9     | 79     | 6     | 6     | 2     | 2     |         | 1     | 1     | 1     |
| C28             | 104    | 104    | 38    | 38    | 4     | 4     | 2       | 2     | 1     | 1     |
| C29             | 41     | 43     | 4     | 4     | 2     | 2     | 1       | 1     | 1     | 1     |
| C30             | 180    | 180    | 10    | 10    | 2     | 2     | 1       | 1     | 1     | 1     |
| C31             | 44     | 46     | 6     | 6     | 2     | 2     | 1       | 1     | 1     | 1     |
| C32             | 87     | 87     | 5     | 5     | 1     | 1     | 1       | 1     | 1     | 1     |
| C33             | 88     | 88     | 11    | 11    | 3     | 3     | 2       | 2     | 1     | 1     |
| C24             | 200    | 20     | 11    | 11    |       | 2     | 1       | 1     | 1     | 1     |
| C34             | 20     | 50     | 4     | 4     |       | 2     |         | 1     | 1     | 1     |
| C35             | 34     | 36     | 6     | 6     | 2     | 2     |         | 1     | 1     | 1     |
| C36             | 29     | 29     | 3     | 3     | 1     | 1     | 1       | 1     | 1     | 1     |
| C37             | 230    | 5977   | 25    | 25    | 5     | 5     | 3       | 3     | 1     | 1     |
| C38             | 63     | 63     | 4     | 4     | 2     | 2     | 1       | 1     | 1     | 1     |
| C39             | 2225   | 74916  | 627   | 638   | 126   | 126   | 21      | 21    | 4     | 4     |
| C40             | 126    | 144    | 10    | 10    | 3     | 3     | 1       | 1     | 1     | 1     |
| C41             | 112    | 101    | 10    | 10    | 2     | 2     | 1       | 1     | 1     | 1     |
| C41             | 115    | 121    | 10 7  | 10    |       | 3     |         | 1     | 1     | 1     |
| C42             | 66     | 66     |       | /     | 2     | 2     | 1       | 1     | 1     | 1     |
| C43             | 109    | 109    | 9     | 9     | 3     | 3     | 2       | 2     | 1     | 1     |
| C44             | 59     | 59     | 9     | 9     | 2     | 2     | 2       | 2     | 1     | 1     |
| C45             | 45     | 46     | 6     | 6     | 2     | 2     | 1       | 1     | 1     | 1     |
| C46             | 140    | 140    | 40    | 40    | 4     | 4     | 2       | 2     | 1     | 1     |
| C47             | 184    | 135321 | 23    | 1228  | 5     | 20    | 2       | 2     | 1     | 1     |
| C19             | 107    | 200    | 20    | 1220  | 6     | 20    | 2       | 2     | 1     | 1     |
| C48             | 197    | 200    | 23    | 23    | 6     | 6     |         | 2     | 1     | 1     |
| C49             | 88     | 89     | 8     | 8     | 2     | 2     |         | 1     | 1     | 1     |
| C50             | 325    | 140438 | 20    | 20    | 5     | 5     | 2       | 2     | 1     | 1     |
| C51             | 167    | 169    | 12    | 12    | 3     | 3     | 2       | 2     | 1     | 1     |
| C52             | 158    | 180    | 21    | 21    | 6     | 6     | 2       | 2     | 1     | 1     |
| C53             | 4283   | 7914   | 554   | 573   | 83    | 83    | 14      | 14    | 3     | 3     |
| C54             | -200   | 110    | 004   | 0,0   | 00    | 00    | 11      | 1     | 1     | 1     |
| C54             | 90     | 110    |       | 24    | 11    | 11    |         | 1     | 1     | 1     |
| C55             | 104    | 208    | 34    | 34    | 11    | 11    | 3       | 3     | 2     | 2     |
| C56             | 5504   | 6852   | 554   | 554   | 110   | 110   | 20      | 20    | 4     | 4     |
| C57             | 1719   | 2734   | 62    | 63    | 7     | 7     | 2       | 2     | 1     | 1     |
| C58             | 4735   | 14087  | 118   | 118   | 38    | 38    | 14      | 14    | 4     | 4     |
| C59             | 306331 | 307503 | 86021 | 86022 | 28297 | 28299 | 6854    | 6854  | 1303  | 1303  |

<sup>‡.</sup> The clustering labels are provided by the authors of [3]



Fig. 9. Partition tree of HP35 Nle/Nle, with  $S_0 = 500, P_0 = 0.7, S_c = 10000, P_c = 0.95$  and the Gaussian kernel.



Fig. 10. Different stable structures resulting from different  $d_0$  by CAPT. Each column corresponds to different  $d_0$ : (A)  $d_0 = 0.2318932$ ; (B)  $d_0 = 0.1972243$ ; (C)  $d_0 = 0.1757350$ ; (D)  $d_0 = 0.1594225$ . The MAD between the centers of C39 under Case B and Case C is 0.1727754. The structures with the same color in each row are exactly the same frame.



Fig. 11. Different stable structures resulting from different  $d_0$  by MPP. MPP found five clusters: I1, I2, U, N1 and N2. Each column corresponds to different  $d_0$ : (A)  $d_0 = 0.2318932$ ; (B)  $d_0 = 0.1972243$ ; (C)  $d_0 =$ 0.1757350; (D)  $d_0 = 0.1594225$ . Detailed values of LDc and LDa are given in Table 14. The structures with the same color in each row are exactly the same frame.

## 4.3 Sensitivity analysis

In this part, we conduct the sensitivity analysis for the parameters  $S_0$  and  $P_0$ , as well as the kernel function for density estimation.  $S_0$ , as discussed before, only determines the minimal size of each cluster we obtained. We set  $S_0 = 10000$  for previous experiments. Here we also give the results while using  $S_0 = 500$  with  $P_0 = 0.7$  and the Gaussian kernel. Since there are many clusters, we first set  $P_c = 0.95$ . The results are given in Table 13 and the partition tree is shown in Figure 9. These results show that there

| ST/Q.             |     | I1     | N1     | U      | I2     | N2    |
|-------------------|-----|--------|--------|--------|--------|-------|
| $d_0 = 0.3418513$ | LDc | 114766 | 111358 | 10134  | 84735  | 10647 |
| (50%)             | LDa | 307002 | 294150 | 119336 | 297628 | 44064 |
| $d_0 = 0.2318932$ | LDc | 71943  | 55576  | 1978   | 20080  | 499   |
| (5%)              | LDa | 82447  | 58818  | 2223   | 31423  | 535   |
| $d_0 = 0.1972243$ | LDc | 27375  | 15659  | 376    | 4356   | 49    |
| (0.5%)            | LDa | 28299  | 15726  | 379    | 4759   | 49    |
| $d_0 = 0.1757350$ | LDc | 6766   | 3789   | 67     | 816    | 8     |
| (0.05%)           | LDa | 6854   | 3790   | 67     | 839    | 8     |
| $d_0 = 0.1594225$ | LDc | 1293   | 737    | 12     | 130    | 3     |
| (0.005%)          | LDa | 1303   | 737    | 12     | 133    | 3     |

is only one stable cluster C59 with LDc=6854. We then set  $P_c = 0.7$  and run CAPT on C59. The partition tree is shown in Figure 13, where we find 6 stable clusters, as shown in Table 15. These are exactly the same results found by setting  $S_0 = 10000$ . However, with a too large  $S_0$ , we can not get the right number of clusters. Taking Alanine dipeptide as an example, we only get 4 clusters if we set  $S_0 = 1948$  (i.e., 1% of the whole population), because there are only 1529 and 425 frames in the clusters S5 and S6 of Figure 4(A) in the main paper, respectively. So if one wants to explore the whole cluster structure, one should set a smaller value for  $S_0$ , say,  $100 \leq S_0 \leq 500$ . For complex biomolecules, one may be interested only in the stable structures, and a larger value for  $S_0$  seems more efficient in such cases.

TABLE 15 LDc of HP35 NIe/NIe clusters in the partition tree shown in Figure 13.  $d_0$  is set as 0.1757350.

| Cluster | L1  | L2   | L3   | L4  | L5  | L6  | L7   | L8   | L9  |
|---------|-----|------|------|-----|-----|-----|------|------|-----|
| LDc     | 1   | 1    | 1    | 2   | 1   | 1   | 1    | 8    | 1   |
| Cluster | L10 | L11  | L12  | L13 | L14 | L15 | L16  | L17  | L18 |
| LDc     | 1   | 3    | 2    | 1   | 1   | 14  | 2    | 1    | 2   |
| Cluster | L19 | L20  | L21  | L22 | L23 | L24 | L25  | L26  | L27 |
| LDc     | 1   | 1    | 1    | 1   | 1   | 5   | 1    | 1    | 1   |
| Cluster | L28 | L29  | L30  | L31 | L32 | L33 | L34  | L35  | L36 |
| LDc     | 2   | 1    | 1    | 1   | 22  | 7   | 1    | 1    | 3   |
| Cluster | L37 | L38  | L39  | L40 | L41 | L42 | L43  | L44  | L45 |
| LDc     | 1   | 3    | 2    | 2   | 1   | 2   | 1    | 3    | 1   |
| Cluster | L46 | L47  | L48  | L49 | L50 | L51 | L52  | L53  | L54 |
| LDc     | 2   | 1    | 2    | 1   | 1   | 2   | 1    | 2    | 7   |
| Cluster | L55 | L56  | L57  | L58 | L59 | L60 | L61  | L62  | L63 |
| LDc     | 2   | 4    | 1    | 2   | 11  | 7   | 11   | 1    | 2   |
| Cluster | L64 | L65  | L66  | L67 | L68 | L69 | L70  | L71  | L72 |
| LDc     | 2   | 4    | 2    | 5   | 8   | 3   | 2    | 5    | 4   |
| Cluster | L73 | L74  | L75  | L76 | L77 | L78 | L79  | L80  | L81 |
| LDc     | 2   | 2    | 10   | 20  | 5   | 2   | 2    | 3    | 3   |
| Cluster | L82 | L83  | L84  | L85 | L86 | L87 | L88  | L89  | L90 |
| LDc     | 8   | 2    | 67   | 3   | 51  | 12  | 3167 | 1321 | 763 |
| Cluster | L91 | L92  | L93  |     |     |     |      |      |     |
| LDc     | 834 | 3662 | 6854 |     |     |     |      |      |     |

For  $P_0$ , we tried five different values {0.6, 0.65, 0.7, 0.75, 0.8}, with  $S_0 = 10000$  and the Gaussian kernel. The resulting partition trees are given in Figure 14, Figure 15, Figure 16, Figure 17 and Figure 18. The corresponding LDc values are given in Table 17, Table 18, Table 19, Table 20 and Table 21. A summary of stable clusters is given in Table 22. There are only 5 stable clusters when  $P_0 = 0.8$ . For  $0.6 \le P_0 \le 0.75$ , we get 6 stable clusters. Interestingly, although



Fig. 12. ARI between cluster labels based on different kernel functions under different value of  $S_0$  with  $S_c = 10000$ ,  $P_c = P_0 = 0.7$ . The left panel is for the case  $S_0 = 10000$ , and the right panel is for the case  $S_0 = 500$ . In the figure, the x-axis is the energy barrier and the y-axis is the ARI. ARI(E,V) is the ARI between cluster labels based on the Epanechnikov kernel and the von Mises kernel, ARI(G,E) is the ARI between cluster labels based on the Gaussian kernel and the on the Gaussian kernel and the von Mises kernel.

the resulting partition trees are different for different values of  $P_0$ , the key energy barriers between these 6 stable clusters are the same.

 
 TABLE 16

 Transition Matrix between meaningful clusters obtained by CAPT for HP35 Nle/Nle. 'Other' are conformations not belonging to S1-S6.

|       | other  | S1     | S2     | S3     | S4     | S5     | S6     |
|-------|--------|--------|--------|--------|--------|--------|--------|
| other | 0.9886 | 0.0003 | 0.0033 | 0.0007 | 0.0027 | 0.0002 | 0.0041 |
| S1    | 0.0101 | 0.9230 | 0.0006 | 0.0062 | 0.0000 | 0.0600 | 0.0001 |
| S2    | 0.0662 | 0.0004 | 0.9199 | 0.0000 | 0.0090 | 0.0000 | 0.0046 |
| S3    | 0.0111 | 0.0040 | 0.0000 | 0.9099 | 0.0005 | 0.0736 | 0.0009 |
| S4    | 0.0551 | 0.0000 | 0.0093 | 0.0008 | 0.8826 | 0.0001 | 0.0520 |
| S5    | 0.0067 | 0.0641 | 0.0000 | 0.1430 | 0.0003 | 0.7827 | 0.0032 |
| S6    | 0.0361 | 0.0000 | 0.0020 | 0.0004 | 0.0223 | 0.0009 | 0.9383 |

For the kernel function used for density estimation, we tried three different kernels: Gaussian, von Mises and Epanechnikov. They result in the same stable clusters, as shown in Table 23 and Table 24. Note that for different kernel functions, the partition trees are a bit different, as shown in Figure 19 and Figure 20. In addition, we show the ARI values between cluster labels from different kernel functions in Figure 12. As we can see from the figure, ARI is sensitive to the partition score cutoff, which is reasonable. Different kernel functions result in density estimates of different smoothness. ARI may drop at some cutoff, however it will be pulled up later as shown in the figure. For example, when cutoff=0.82, ARI(G,V)> 0.99; however, it drops to 0.9 when cutoff=0.81, and goes to 0.96 when cutoff=0.8. Even for the same angle, the partition scores are different under different kernel functions. That is, from a local point of view, the result is sensitive to the kernel function; however, from a global point of view, it is insensitive to the kernel function.

9

| Cluster | L1  | L2  | L3   | L4   | L5  | L6  | L7   | L8   | L9  |
|---------|-----|-----|------|------|-----|-----|------|------|-----|
| LDc     | 2   | 1   | 2    | 3    | 2   | 2   | 2    | 1    | 12  |
| Cluster | L10 | L11 | L12  | L13  | L14 | L15 | L16  | L17  | L18 |
| LDc     | 1   | 14  | 4    | 2    | 3   | 2   | 1    | 2    | 2   |
| Cluster | L19 | L20 | L21  | L22  | L23 | L24 | L25  | L26  | L27 |
| LDc     | 1   | 2   | 3    | 51   | 2   | 2   | 1    | 2    | 1   |
| Cluster | L28 | L29 | L30  | L31  | L32 | L33 | L34  | L35  | L36 |
| LDc     | 2   | 8   | 2    | 2    | 1   | 2   | 1    | 1    | 1   |
| Cluster | L37 | L38 | L39  | L40  | L41 | L42 | L43  | L44  | L45 |
| LDc     | 4   | 1   | 1    | 2    | 2   | 1   | 2    | 2    | 2   |
| Cluster | L46 | L47 | L48  | L49  | L50 | L51 | L52  | L53  | L54 |
| LDc     | 1   | 2   | 2    | 22   | 2   | 3   | 2    | 2    | 1   |
| Cluster | L55 | L56 | L57  | L58  | L59 | L60 | L61  | L62  | L63 |
| LDc     | 2   | 3   | 5    | 3    | 3   | 8   | 2    | 2    | 2   |
| Cluster | L64 | L65 | L66  | L67  | L68 | L69 | L70  | L71  | L72 |
| LDc     | 1   | 2   | 2    | 4    | 3   | 2   | 2    | 2    | 3   |
| Cluster | L73 | L74 | L75  | L76  | L77 | L78 | L79  | L80  | L81 |
| LDc     | 21  | 2   | 2    | 14   | 20  | 2   | 2    | 2    | 2   |
| Cluster | L82 | L83 | L84  | L85  | L86 | L87 | L88  | L89  |     |
| LDc     | 3   | 1   | 1321 | 3167 | 834 | 763 | 3663 | 6854 |     |

shown in Figure 14

TABLE 18 LDc with  $d_0 = 0.1757350$  of centers of HP35 Nle/Nle in the partition tree shown in Figure 15

| Cluster | L1  | L2   | L3   | L4  | L5  | L6   | L7   | L8  | L9  |
|---------|-----|------|------|-----|-----|------|------|-----|-----|
| LDc     | 3   | 2    | 2    | 2   | 1   | 14   | 4    | 1   | 14  |
| Cluster | L10 | L11  | L12  | L13 | L14 | L15  | L16  | L17 | L18 |
| LDc     | 2   | 3    | 2    | 1   | 2   | 2    | 2    | 2   | 1   |
| Cluster | L19 | L20  | L21  | L22 | L23 | L24  | L25  | L26 | L27 |
| LDc     | 2   | 3    | 51   | 2   | 1   | 1    | 2    | 2   | 2   |
| Cluster | L28 | L29  | L30  | L31 | L32 | L33  | L34  | L35 | L36 |
| LDc     | 2   | 2    | 2    | 8   | 3   | 2    | 2    | 2   | 4   |
| Cluster | L37 | L38  | L39  | L40 | L41 | L42  | L43  | L44 | L45 |
| LDc     | 1   | 1    | 2    | 2   | 2   | 1    | 2    | 2   | 2   |
| Cluster | L46 | L47  | L48  | L49 | L50 | L51  | L52  | L53 | L54 |
| LDc     | 1   | 2    | 2    | 1   | 1   | 2    | 2    | 3   | 1   |
| Cluster | L55 | L56  | L57  | L58 | L59 | L60  | L61  | L62 | L63 |
| LDc     | 3   | 2    | 3    | 1   | 2   | 1    | 2    | 2   | 2   |
| Cluster | L64 | L65  | L66  | L67 | L68 | L69  | L70  | L71 | L72 |
| LDc     | 2   | 2    | 4    | 3   | 3   | 1    | 5    | 3   | 2   |
| Cluster | L73 | L74  | L75  | L76 | L77 | L78  | L79  | L80 | L81 |
| LDc     | 21  | 2    | 2    | 2   | 2   | 2    | 20   | 1   | 2   |
| Cluster | L82 | L83  | L84  | L85 | L86 | L87  | L88  |     |     |
| LDc     | 12  | 1321 | 3167 | 834 | 763 | 3663 | 6854 |     |     |

### 5 REMARK ON THE VON MISES KERNEL

Assuming that  $\{\theta_i, i = 1, ...n\}$  follows vM $(\mu, \kappa)$ , the density estimate using a standard von Mises kernel [8] is given by

$$\hat{f}(\theta, v) = \frac{1}{n(2\pi)I_0(v)} \sum_{i=1}^n e^{v\cos(\theta - \theta_i)},$$
 (1)

where

$$v = \left\{\frac{3n\hat{\kappa}^2 I_2(2\hat{\kappa})}{4\sqrt{\pi}I_0(\hat{\kappa})^2}\right\}^{\frac{2}{5}},\tag{2}$$

 $\hat{\kappa}$  is the MLE of  $\kappa$ ,  $I_r(v)$  is the modified Bessel function of order r, and v takes the role of (inverse of) smoothing parameter. In practice, the computer gives  $I_0(v) = \infty$  when v > 709, i.e., larger than the maximal number that the computer can handle with. Thus we set v = 709 when vis actually bigger than 709 in analysis.

TABLE 19 LDc with  $d_0 = 0.1757350$  of centers of HP35 Nle/Nle in the partition tree shown in Figure 16

| Cluster | L1  | L2  | L3   | L4   | L5  | L6  | L7  | L8   | L9   |
|---------|-----|-----|------|------|-----|-----|-----|------|------|
| LDc     | 1   | 2   | 1    | 2    | 2   | 2   | 14  | 4    | 1    |
| Cluster | L10 | L11 | L12  | L13  | L14 | L15 | L16 | L17  | L18  |
| LDc     | 3   | 2   | 2    | 2    | 14  | 2   | 3   | 51   | 1    |
| Cluster | L19 | L20 | L21  | L22  | L23 | L24 | L25 | L26  | L27  |
| LDc     | 1   | 1   | 2    | 8    | 2   | 2   | 2   | 2    | 2    |
| Cluster | L28 | L29 | L30  | L31  | L32 | L33 | L34 | L35  | L36  |
| LDc     | 2   | 2   | 2    | 4    | 1   | 1   | 2   | 2    | 2    |
| Cluster | L37 | L38 | L39  | L40  | L41 | L42 | L43 | L44  | L45  |
| LDc     | 1   | 3   | 2    | 1    | 2   | 2   | 1   | 2    | 3    |
| Cluster | L46 | L47 | L48  | L49  | L50 | L51 | L52 | L53  | L54  |
| LDc     | 2   | 1   | 2    | 2    | 3   | 1   | 2   | 2    | 1    |
| Cluster | L55 | L56 | L57  | L58  | L59 | L60 | L61 | L62  | L63  |
| LDc     | 2   | 2   | 2    | 2    | 4   | 3   | 2   | 1    | 5    |
| Cluster | L64 | L65 | L66  | L67  | L68 | L69 | L70 | L71  | L72  |
| LDc     | 1   | 2   | 21   | 3    | 1   | 2   | 2   | 2    | 2    |
| Cluster | L73 | L74 | L75  | L76  | L77 | L78 | L79 | L80  | L81  |
| LDc     | 2   | 20  | 2    | 2    | 2   | 3   | 12  | 1321 | 3167 |
| Cluster | L82 | L83 | L84  | L85  |     |     |     |      |      |
| LDc     | 834 | 763 | 3663 | 6854 |     |     |     |      |      |

TABLE 20 LDc with  $d_0 = 0.1757350$  of centers of HP35 NIe/NIe in the partition tree shown in Figure 17

| L1   | L2                                                                                                                                                                                                         | L3                                                                                                                                                                                                                                                                  | L4                                                    | L5                                                    | L6                                                    | L7                                                    | L8                                                     | L9                                                     |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| 1    | 2                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                   | 2                                                     | 51                                                    | 2                                                     | 14                                                    | 1                                                      | 3                                                      |
| L10  | L11                                                                                                                                                                                                        | L12                                                                                                                                                                                                                                                                 | L13                                                   | L14                                                   | L15                                                   | L16                                                   | L17                                                    | L18                                                    |
| 2    | 2                                                                                                                                                                                                          | 14                                                                                                                                                                                                                                                                  | 2                                                     | 2                                                     | 1                                                     | 1                                                     | 1                                                      | 2                                                      |
| L19  | L20                                                                                                                                                                                                        | L21                                                                                                                                                                                                                                                                 | L22                                                   | L23                                                   | L24                                                   | L25                                                   | L26                                                    | L27                                                    |
| 8    | 2                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                   | 2                                                     | 2                                                     | 2                                                     | 2                                                     | 2                                                      | 1                                                      |
| L28  | L29                                                                                                                                                                                                        | L30                                                                                                                                                                                                                                                                 | L31                                                   | L32                                                   | L33                                                   | L34                                                   | L35                                                    | L36                                                    |
| 1    | 2                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                   | 2                                                     | 1                                                     | 3                                                     | 2                                                     | 1                                                      | 2                                                      |
| L37  | L38                                                                                                                                                                                                        | L39                                                                                                                                                                                                                                                                 | L40                                                   | L41                                                   | L42                                                   | L43                                                   | L44                                                    | L45                                                    |
| 2    | 1                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                   | 3                                                     | 2                                                     | 1                                                     | 2                                                     | 3                                                      | 1                                                      |
| L46  | L47                                                                                                                                                                                                        | L48                                                                                                                                                                                                                                                                 | L49                                                   | L50                                                   | L51                                                   | L52                                                   | L53                                                    | L54                                                    |
| 2    | 2                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                   | 3                                                     | 1                                                     | 2                                                     | 2                                                     | 2                                                      | 4                                                      |
| L55  | L56                                                                                                                                                                                                        | L57                                                                                                                                                                                                                                                                 | L58                                                   | L59                                                   | L60                                                   | L61                                                   | L62                                                    | L63                                                    |
| 2    | 2                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                   | 1                                                     | 1                                                     | 2                                                     | 21                                                    | 3                                                      | 1                                                      |
| L64  | L65                                                                                                                                                                                                        | L66                                                                                                                                                                                                                                                                 | L67                                                   | L68                                                   | L69                                                   | L70                                                   | L71                                                    | L72                                                    |
| 2    | 4                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                   | 2                                                     | 2                                                     | 2                                                     | 20                                                    | 2                                                      | 2                                                      |
| L73  | L74                                                                                                                                                                                                        | L75                                                                                                                                                                                                                                                                 | L76                                                   | L77                                                   | L78                                                   | L79                                                   | L80                                                    | L81                                                    |
| 2    | 2                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                   | 3                                                     | 12                                                    | 1321                                                  | 3167                                                  | 834                                                    | 763                                                    |
| L82  | L83                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     |                                                       |                                                       |                                                       |                                                       |                                                        |                                                        |
| 3666 | 6854                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                     |                                                       |                                                       |                                                       |                                                       |                                                        |                                                        |
|      | L1<br>1<br>L10<br>2<br>L19<br>8<br>L28<br>1<br>L37<br>2<br>L46<br>2<br>L55<br>2<br>L46<br>2<br>L55<br>2<br>L46<br>2<br>L55<br>2<br>L46<br>2<br>L55<br>2<br>L46<br>2<br>L73<br>2<br>L73<br>2<br>L82<br>3666 | $\begin{array}{c cccc} L1 & L2 \\ 1 & 2 \\ L10 & L11 \\ 2 & 2 \\ L19 & L20 \\ 8 & 2 \\ L28 & L29 \\ 1 & 2 \\ L37 & L38 \\ 2 & 1 \\ L46 & L47 \\ 2 & 2 \\ L55 & L56 \\ 2 & 2 \\ L64 & L65 \\ 2 & 4 \\ L73 & L74 \\ 2 & 2 \\ L82 & L83 \\ 3666 & 6854 \\ \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

TABLE 21 LDc with  $d_0 = 0.1757350$  of centers of HP35 Nle/Nle in the partition tree shown in Figure 18

| Cluster | L1  | L2  | L3  | L4   | L5  | L6  | L7  | L8   | L9   |
|---------|-----|-----|-----|------|-----|-----|-----|------|------|
| LDc     | 1   | 2   | 1   | 14   | 2   | 2   | 2   | 2    | 21   |
| Cluster | L10 | L11 | L12 | L13  | L14 | L15 | L16 | L17  | L18  |
| LDc     | 2   | 2   | 1   | 1    | 2   | 2   | 2   | 2    | 3    |
| Cluster | L19 | L20 | L21 | L22  | L23 | L24 | L25 | L26  | L27  |
| LDc     | 1   | 1   | 1   | 2    | 2   | 1   | 4   | 2    | 3    |
| Cluster | L28 | L29 | L30 | L31  | L32 | L33 | L34 | L35  | L36  |
| LDc     | 3   | 2   | 2   | 1    | 3   | 1   | 2   | 1    | 2    |
| Cluster | L37 | L38 | L39 | L40  | L41 | L42 | L43 | L44  | L45  |
| LDc     | 2   | 2   | 3   | 2    | 1   | 2   | 3   | 2    | 2    |
| Cluster | L46 | L47 | L48 | L49  | L50 | L51 | L52 | L53  | L54  |
| LDc     | 3   | 2   | 2   | 4    | 20  | 2   | 2   | 2    | 1    |
| Cluster | L55 | L56 | L57 | L58  | L59 | L60 | L61 | L62  | L63  |
| LDc     | 14  | 1   | 3   | 2    | 2   | 2   | 3   | 2    | 5    |
| Cluster | L64 | L65 | L66 | L67  | L68 | L69 | L70 | L71  | L72  |
| LDc     | 2   | 2   | 12  | 3167 | 2   | 763 | 834 | 3764 | 6854 |

TABLE 22 clusters with maximal LDc (Top 6) under different  $P_0$ , where S1-6 is the cluster name used to give a unified comparison. Corresponding structure is given in Figure 6.

|                  |         | S1   | S2  | S3   | S4  | S5   | S6   |
|------------------|---------|------|-----|------|-----|------|------|
| $P_0 = 0.8$      | cluster | L67  | L69 | L71  | L70 | -    | L72  |
|                  | LDc     | 3167 | 763 | 3764 | 834 | -    | 6854 |
| $P_{1} = 0.75$   | cluster | L79  | L81 | L82  | L80 | L78  | L83  |
| $r_0 = 0.75$     | LDc     | 3167 | 763 | 3666 | 834 | 1321 | 6854 |
| $P_{-} = 0.7$    | cluster | L81  | L83 | L84  | L82 | L80  | L85  |
| $r_0 = 0.7$      | LDc     | 3167 | 763 | 3663 | 834 | 1321 | 6854 |
| $P_{1} = 0.65$   | cluster | L84  | L86 | L87  | L85 | L83  | L88  |
| $r_0 = 0.05$     | LDc     | 3167 | 763 | 3663 | 834 | 1321 | 6854 |
| $P_{-} = 0.6$    | cluster | L85  | L87 | L88  | L86 | L84  | L89  |
| $\Gamma_0 = 0.0$ | LDc     | 3167 | 763 | 3663 | 834 | 1321 | 6854 |

TABLE 23 LDc with  $d_0 = 0.1757350$  of centers of HP35 Nle/Nle in the partition tree shown in Figure 19

| Cluster | L1  | L2  | L3   | L4   | L5  | L6  | L7  | L8   | L9   |
|---------|-----|-----|------|------|-----|-----|-----|------|------|
| LDc     | 1   | 2   | 1    | 2    | 2   | 2   | 14  | 4    | 1    |
| Cluster | L10 | L11 | L12  | L13  | L14 | L15 | L16 | L17  | L18  |
| LDc     | 2   | 3   | 2    | 2    | 2   | 14  | 51  | 3    | 1    |
| Cluster | L19 | L20 | L21  | L22  | L23 | L24 | L25 | L26  | L27  |
| LDc     | 1   | 1   | 2    | 8    | 2   | 2   | 2   | 2    | 2    |
| Cluster | L28 | L29 | L30  | L31  | L32 | L33 | L34 | L35  | L36  |
| LDc     | 2   | 2   | 2    | 4    | 1   | 1   | 2   | 2    | 2    |
| Cluster | L37 | L38 | L39  | L40  | L41 | L42 | L43 | L44  | L45  |
| LDc     | 1   | 3   | 2    | 1    | 2   | 2   | 1   | 2    | 3    |
| Cluster | L46 | L47 | L48  | L49  | L50 | L51 | L52 | L53  | L54  |
| LDc     | 2   | 1   | 2    | 2    | 3   | 1   | 2   | 2    | 1    |
| Cluster | L55 | L56 | L57  | L58  | L59 | L60 | L61 | L62  | L63  |
| LDc     | 2   | 2   | 2    | 2    | 4   | 3   | 2   | 1    | 5    |
| Cluster | L64 | L65 | L66  | L67  | L68 | L69 | L70 | L71  | L72  |
| LDc     | 1   | 2   | 21   | 3    | 1   | 2   | 2   | 2    | 2    |
| Cluster | L73 | L74 | L75  | L76  | L77 | L78 | L79 | L80  | L81  |
| LDc     | 2   | 20  | 2    | 2    | 2   | 3   | 12  | 1321 | 3167 |
| Cluster | L82 | L83 | L84  | L85  |     |     |     |      |      |
| LDc     | 834 | 763 | 3663 | 6854 |     |     |     |      |      |

## 6 PARTITION TREES OF HP35 NLE/NLE UNDER DIFFERENT SETTINGS

#### REFERENCES

- [1] Lars Skjærven, Xin-Qiu Yao, Guido Scarabelli, and Barry J Grant. Integrating protein structural dynamics and evolutionary analysis with bio3d. *BMC bioinformatics*, 15(1):399, 2014.
- [2] Alexandros Altis, Phuong H Nguyen, Rainer Hegger, and Gerhard Stock. Dihedral angle principal component analysis of molecular dynamics simulations. *The Journal of Chemical Physics*, 126(24):244111, 2007.
- [3] Abhinav Jain and Gerhard Stock. Hierarchical folding free energy landscape of HP35 revealed by most probable path clustering. *The Journal of Physical Chemistry B*, 118(28):7750–7760, 2014.
- [4] Yuguang Mu, Phuong H Nguyen, and Gerhard Stock. Energy landscape of a small peptide revealed by dihedral angle principal component analysis. *Proteins: Structure, Function, and Bioinformatics*, 58(1):45–52, 2005.
- [5] Sergei V Krivov and Martin Karplus. Hidden complexity of free energy surfaces for peptide (protein) folding. *Proceedings of the National Academy of Sciences*, 101(41):14766–14770, 2004.
  [6] John D Chodera, William C Swope, Jed W Pitera, and Ken A Dill.
- [6] John D Chodera, William C Swope, Jed W Pitera, and Ken A Dill. Long-time protein folding dynamics from short-time molecular dynamics simulations. *Multiscale Modeling & Simulation*, 5(4):1214– 1226, 2006.
- [7] Brooke E Husic, Keri A McKiernan, Hannah K Wayment-Steele, Mohammad M Sultan, and Vijay S Pande. A minimum variance clustering approach produces robust and interpretable coarsegrained models. *Journal of chemical theory and computation*, 14(2):1071–1082, 2018.

TABLE 24 LDc with  $d_0 = 0.1757350$  of centers of HP35 Nle/Nle in the partition tree shown in Figure 20

| Cluster | L1   | L2   | L3  | L4   | L5  | L6   | L7  | L8  | L9  |
|---------|------|------|-----|------|-----|------|-----|-----|-----|
| LDc     | 1    | 1    | 2   | 2    | 1   | 2    | 4   | 1   | 14  |
| Cluster | L10  | L11  | L12 | L13  | L14 | L15  | L16 | L17 | L18 |
| LDc     | 2    | 2    | 3   | 2    | 1   | 14   | 2   | 5   | 1   |
| Cluster | L19  | L20  | L21 | L22  | L23 | L24  | L25 | L26 | L27 |
| LDc     | 3    | 2    | 2   | 1    | 2   | 2    | 1   | 8   | 2   |
| Cluster | L28  | L29  | L30 | L31  | L32 | L33  | L34 | L35 | L36 |
| LDc     | 2    | 1    | 2   | 2    | 2   | 4    | 1   | 2   | 2   |
| Cluster | L37  | L38  | L39 | L40  | L41 | L42  | L43 | L44 | L45 |
| LDc     | 2    | 3    | 1   | 2    | 2   | 2    | 1   | 2   | 2   |
| Cluster | L46  | L47  | L48 | L49  | L50 | L51  | L52 | L53 | L54 |
| LDc     | 3    | 2    | 1   | 2    | 1   | 2    | 3   | 2   | 2   |
| Cluster | L55  | L56  | L57 | L58  | L59 | L60  | L61 | L62 | L63 |
| LDc     | 51   | 1    | 2   | 2    | 2   | 4    | 2   | 2   | 3   |
| Cluster | L64  | L65  | L66 | L67  | L68 | L69  | L70 | L71 | L72 |
| LDc     | 1    | 5    | 1   | 21   | 3   | 2    | 1   | 2   | 2   |
| Cluster | L73  | L74  | L75 | L76  | L77 | L78  | L79 | L80 | L81 |
| LDc     | 2    | 2    | 2   | 2    | 2   | 12   | 20  | 2   | 3   |
| Cluster | L82  | L83  | L84 | L85  | L86 | L87  |     |     |     |
| LDc     | 1321 | 3167 | 834 | 3662 | 763 | 6854 |     |     |     |

[8] Charles C Taylor. Automatic bandwidth selection for circular density estimation. *Computational Statistics & Data Analysis*, 52(7):3493–3500, 2008.



Fig. 13. Sub-partition tree of C59 in Figure 9 for HP35 Nle/Nle with  $S_0 = 500$ ,  $P_c = P_0 = 0.7$ , and the Gaussian kernel. In the tree, the root node is C59.



Fig. 14. Partition tree of HP35 NIe/NIe with  $S_0 = 10000$ ,  $P_c = P_0 = 0.6$ , and the Gaussian kernel.



Fig. 15. Partition tree of HP35 NIe/NIe with  $S_0 = 10000, P_c = P_0 = 0.65$ , and the Gaussian kernel.



Fig. 16. Partition tree of HP35 NIe/NIe with  $S_0 = 10000$ ,  $P_c = P_0 = 0.7$ , and the Gaussian kernel.



Fig. 17. Partition tree of HP35 NIe/NIe with  $S_0 = 10000, P_c = P_0 = 0.75$ , and the Gaussian kernel.



Fig. 18. Partition tree of HP35 NIe/NIe with  $S_0 = 10000$ ,  $P_c = P_0 = 0.8$ , and the Gaussian kernel.



Fig. 19. Partition tree of HP35 Nle/Nle with  $S_0 = 10000, P_c = P_0 = 0.7$ , and the Epanechnikov kernel.



Fig. 20. Partition tree of HP35 NIe/NIe with  $S_0 = 10000$ ,  $P_c = P_0 = 0.7$ , and the von Mises kernel.