Supplemental Material for
Revealing Free Energy Landscape from MD
Data via Conditional Angle Partition Tree

Hangjin Jiang, Han Li, Wing Hung Wong, and Xiaodan Fan

1 OVERVIEW OF MD DATA AND TRANSITION
MATRIX

Figure 1 shows an overview of MD trajectory data and
related transition matrix in two-step clustering procedure.

2 R coDE FOR CAPT ALGORITHM

CAPT algorithm is implemented in R, which is available at
https:/ /jiangdata.github.io/resources/capt.zip. We provide
an example in our R code "capt.zip’, together with a tutorial
file, to further illustrate how to use our R code.

3 DETAILS ALANINE
DIPEPTIDE

3.1 Visualization of Alanine dipeptide data

ABOUT ANALYZING

Figure 2 shows the histograms of angles (¢, ¢) of Alanine
dipeptide. Figure 3 shows the distribution of the frames of
Alanine dipeptide data in the angle phase.

3.2 Settings for PCCA, PCCA+, MPP and Gibbs

When using PCCA /PCCA+, one should specify the range of
the number of clusters, i.e., the maximal number of clusters
Nmaz and minimal number of clusters 1,,,;,. We set Ny00 =
Nmin = 6 for PCCA, and N0 = 9 and ngm = 3 for
PCCA+. The Gibbs sampling algorithm is also run with the
true number of clusters.

To use PCCA, PCCA+, MPP and Gibbs sampling
method, one has to cluster frames into microstates first. In
the simple case of Alanine dipeptide which only has two
torsion angles, we use a grid method in the angle space to
group frames to microstates. More specifically, we partition
the whole space [—m, 7] X [—m, 7] into a 80 x 80 grid, and
take each small grid as a microstate. The center of each small
grid cell is treated as the center of this microstate. In fact, by

e Hangjin Jiang is with the Center for Data Science, Zhejiang University.
Han Li is with College of Economics, Shenzhen University.
e Wing Hung Wong is with the Department of Statistics, Stanford
University.
E-mail:whwong@stanford.edu
e Xiaodan Fan is with the Department of Statistics, The Chinese University
of Hong Kong
E-mail: xfan@cuhk.edu.hk

A. Trajectories of Conformations (MD data) B. Microstates on the Trajectories

—(1—2—3—+ —0 0 0 0
O—0 @ ——eo O
_— D
—@ Geometrical Clustering ‘.—
— : j———A5)—6)— —0)— . .

J !

D. Transition Matrix between Conformations C. Transition Matrix between Microstates

1 2 3)| ()] - ..

Fig. 1. MD trajectory data and related transition matrix. (A) shows
the trajectories of conformations (denoted by empty circles) obtained
from molecular dynamics simulation. Note that circles in different color
denote different conformations in different trajectories. (B) shows the
trajectories of microstates (denoted by solid colored circles) by mapping
conformations to microstates through geometrical clustering. (C) shows
the transition matrix, T(m x m), between microstates obtained from
trajectories of conformations in sub-figure (B), where m, usually no more
than thousands, is the number of microstates obtained by geometrical
clustering in the splitting step. The entry of this matrix, T ;, is the number
of jumping from microstate ¢ to microstate j along the trajectories.
That is, T;; is the number of times we observe in all trajectories that
the microstate ¢ is followed by microstate j. (D) shows the transition
matrix, K (n x n), between conformations obtained from trajectories of
conformations in sub-figure (A), where n, usually at the magnitude of
millions, is the number of conformations observed in MD simulations.
The entry of this matrix, K, is the counts of jumping from conformation
i to conformation j along the trajectories. That is, K;; is the number of
times we observe in all trajectories that the conformation : is followed
by conformation j. Since any two conformations along the trajectories
are different, L(s — 1) of the entries of K are 1, and others are 0, thus
non-informative for detecting stable structures, where L is the number
of trajectories, s is the number of conformations in each trajectory, and
n=1LXs.

dividing the (¢, 1) space into 6400 bins, we get many empty
bins and remove them from our analysis. We take each non-
empty bin as a microstate, and map each conformation in
the trajectory to the corresponding microstate, then we get
trajectories of microstates, and the transition matrix between
microstates.
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Fig. 2. Histograms of angles (v, ¢) of Alanine dipeptide. (A) and (B) are
the histograms of 1) and ¢, respectively. (C) and (D) are the histograms
of the one-step distance of 1) and ¢, respectively. In (A) and (B), the blue
dashed lines show the partition positions found by CAPT. In (C) and (D),
the blue and red dashed lines correspond to the 95% and 50% quantiles
of the distribution, respectively.
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Fig. 3. Scatter plot of frames of Alanine dipeptide data in the angle
phase. The Alanine dipeptide is a small biomolecule with only two
torsion angles, say, ¢ and v, and its free energy landscape is fully
determined by these two angles.

3.3 Transition matrix from different methods

Table 1 shows the transition matrix of the benchmark
clusters of Alanine dipeptide, Table 2 shows results from
CAPT, Table 4 shows results from PCCA, Table 3 shows that
of clusters of Alanine dipeptide obtained by MPP, Table 5
show results from PCCA+, Table 6 show results from Gibbs
sampling method.

TABLE 1
Transition matrix of the benchmark clusters of Alanine dipeptide

S1 S2 S3 S4 S5 S6

S1 0.9457 0.0477 0.0062 0.0004 0.0000 0.0000
S2 0.0609 0.9365 0.0004 0.0021 0.0000 0.0002
S3 0.0403 0.0021 0.8939 0.0636 0.0000 0.0000
S4 0.0020 0.0090 0.0526 0.9356 0.0008 0.0000
S5 0.0013 0.0013 0.0000 0.0098 0.9718 0.0158
S6 0.0000 0.0401 0.0000 0.0000 0.0519 0.9080
Sum of diagonals: 5.591479
Mean of diagonals: 0.9319131
Minimal of diagonals: 0.8939
TABLE 2
Transition matrix between clusters of Alanine dipeptide obtained by
CAPT
S011 S012 S013 S021  S022  S023
S011 0.9461 0.0475 0.0000 0.0061 0.0003 0.0000
S012 0.0613 0.9360 0.0002 0.0004 0.0021 0.0000
S013 0.0027 0.0163 0.9074 0.0000 0.0000 0.0736
S021 0.0407 0.0019 0.0000 0.8932 0.0642 0.0000
S022 0.0018 0.0095 0.0000 0.0515 0.9364 0.0009
S023 0.0000 0.0000 0.0975 0.0000 0.0176 0.8848

Sum of diagonals: 5.50389
Mean of diagonals: 0.917315
Minimal of diagonals: 0.8848

3.4 Discussion

If we compare the energy landscape of benchmark clusters
of Alanine dipeptide with that obtained by CAPT, although
ARI is as high as 0.987002, we can still find a small
difference: the boundary between S013 and S023 in Figure
4(B) is a bit higher than that between S5 and S6 in Figure
4(A). This small difference is due to the order of angles used
for partitioning. Table 7 gives the transition matrix when
using different angles in the first step of CAPT for Alanine
dipeptide. The ¢ column is the transition matrix between
clusters obtained by partitioning all frames into 2 clusters
according to the distribution of 1), where the partition score
is 0.9728. The ¢ column is the transition matrix between
clusters obtained by partitioning all frames into 3 clusters
according to the distribution of ¢, where the partition score
is 0.9395. Thus CAPT prefers using v to partition in the first
step. That means that CAPT is a bit greedy in transition
probability, which leads to the small discrepancy from the
benchmark.

Alternatively, if CAPT had used ¢ first in constructing
the partition tree, we would get the energy landscape as
shown in Figure 4, which would be closer to the benchmark
in Figure 4(A) (ARI=0.9873). The corresponding transition
matrix is given in Table 8. This implies that there is room
to improve the performance of CAPT if we can find a more
suitable partition score.

3.5 Sensitivity Analysis

As we can see from the results of PCCA+ in Figure 4,
PCCA+ overestimates the number of clusters under the
setting in Section 2.2 of this Supplementary Material. We
try another setting for PCCA+, nypee = 5 and npin = 7,
denoted as PCCA+. We also run the Gibbs sampling
algorithm with 5 and 7 clusters, denoted by Gibbs’' and



TABLE 3
Transition matrix between clusters of Alanine dipeptide obtained by
MPP

SO S1 S2 S3 S4 S5
SO0 0.0526 0.3289 0.0000 0.1447 0.4342 0.0395
S1 0.0013 0.8124 0.0001 0.0460 0.1391 0.0011
S2 0.0000 0.2778 0.0556 0.6667 0.0000 0.0000
S3 0.0001 0.0159 0.0002 0.8503 0.1335 0.0000
S4 0.0003 0.0330 0.0000 0.0918 0.8745 0.0005
S5 0.0241 0.3012 0.0000 0.0361 0.6145 0.0241
Sum of diagonals: 2.669393
Mean of diagonals: 0.4448989
Minimal of diagonals: 0.0241

TABLE 4
Transition matrix between clusters of Alanine dipeptide obtained by
PCCA

S1 S2 S3 S4 S5 S6
S1 0.9352 0.0003 0.0018 0.0000 0.0000 0.0626
S2 0.0477 0.9131 0.0000 0.0068 0.0324 0.0000
S3 0.0042 0.0000 0.9752 0.0000 0.0004 0.0202
S4 0.0000 0.0032 0.0000 0.9104 0.0816 0.0048
S5 0.0000 0.0269 0.0175 0.0672 0.8884 0.0000
S6 0.0508 0.0000 0.0068 0.0000 0.0000 0.9424
Sum of diagonals: 5.564797
Mean of diagonals: 0.9274662
Minimal of diagonals: 0.8884

S011
S012
S021

S032

Fig. 4. Energy landscape of Alanine dipeptide obtained from CAPT by
using firstly ¢ to partition the angle space.

Gibbs”. Transition matrice from PCCA+’, Gibbs’ and Gibbs”
are shown in Table 9, Table 10 and Table 11. The clustering
results are shown in Figure 5. All these results show
that both PCCA+ and Gibbs sampling algorithm depend
strongly on the pre-selected number of clusters. However,
the number of stable states (clusters) is usually unknown to
us and it is the key quantity to be estimates from the data.

As reported in [2], [3], [4], Dihedral PCA gives clear
energy landscape of biomolecules. However, while we try it
on Alanine dipeptide, its partitioning is not clear as shown
in Figure 6.

For sensitivity analysis of our algorithm, we check the
effect of parameters Py and Sy as well as the kernel

TABLE 5
Transition matrix between clusters of Alanine dipeptide obtained by
PCCA+

S1 S2 S3 S4 S5 S6 S7 S8 S9

S1 0.7667 0.1333 0.0000 0.1000 0.0000 0.0000 0.0000 0.0000 0.0000
52 0.0096 0.9349 0.0096 0.0145 0.0000 0.0000 0.0000 0.0000 0.0313
S3 0.0000 0.0045 0.8649 0.1194 0.0000 0.0000 0.0000 0.0068 0.0045
5S4 0.0030 0.0089 0.0523 0.9211 0.0000 0.0148 0.0000 0.0000 0.0000
S5 0.0000 0.0000 0.0000 0.0000 0.6736 0.0412 0.0659 0.1643 0.0550
S6 0.0000 0.0000 0.0000 0.0009 0.0069 0.9344 0.0539 0.0003 0.0037
S7 0.0000 0.0000 0.0000 0.0000 0.0144 0.0596 0.8945 0.0296 0.0019
S8 0.0000 0.0000 0.0000 0.0000 0.0052 0.0000 0.0046 0.9419 0.0483
59 0.0000 0.0001 0.0000 0.0000 0.0022 0.0009 0.0005 0.0601 0.9361

Sum of diagonals: 7.86813
Mean of diagonals: 0.8742366
Minimal of diagonals: 0.6736

TABLE 6
Transition matrix between clusters of Alanine dipeptide obtained by
Gibbs Sampling method

S0 S1 S2 S3 S4 S5
S0 0.9349 0.0012 0.0018 0.0605 0.0001 0.0015
S1 0.0058 0.8783 0.0666 0.0443 0.0002 0.0047
52 0.0073 0.0562 0.9313 0.0029 0.0010 0.0013
S3 0.0477 0.0069 0.0007 0.9429 0.0000 0.0018
54 0.0033 0.0020 0.0113 0.0020 0.9515 0.0299
S5 0.1374 0.0640 0.0284 0.1919 0.0509 0.5273
Sum of diagonals: 5.1662
Mean of diagonals: 0.8610
Minimal of diagonals: 0.5273

Fig. 5. Clustering result of Alanine dipeptide from PCCA+’ (A), Gibbs’
(B) and Gibbs” (C).
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Fig. 6. The effect of Dihedral PCA on Alanine dipeptide. We apply
Dihedral PCA to the Alanine dipeptide data, but do not see any pattern
explored by PCA.

function while applying CAPT on Alanine dipeptide MD
data. For the kernel function, we tried different kernel
functions, such as Gaussian, von Mises and Epanechnikov,



TABLE 7
Transition matrix when using different partition schemes in the first step

) 2

S1 S2 S1 S2 S3

S1 09949 0.0051 | SI  0.9496 0.0503  0.0000

S2  0.0272 09728 | S2  0.0602 0.9395 0.0003

- - - | S3 0.0015 0.0174 0.9811

TABLE 8
Transition matrix between clusters when first using ¢ to partition in
CAPT

S011 S012 5021 5022 S031 5032
S011  0.9459 0.0060 0.0476  0.0005 0.0000 0.0000
S012  0.0415 0.8920 0.0017 0.0647 0.0000  0.0000
S021  0.0614 0.0003 0.9361 0.0021 0.0000 0.0002
S022  0.0021 0.0517 0.0095 0.9357 0.0009 0.0000
S031  0.0007 0.0000 0.0000 0.0106 0.9774 0.0113
S032  0.0045 0.0000 0.0403 0.0000 0.0336 0.9217

Sum of diagonals: 5.608926
Mean of diagonals: 0.934821
Minimal of diagonals: 0.8920

TABLE 9
Transition matrix between clusters of Alanine dipeptide obtained by
PCCA+/

S1 S2 S3 S4 S5
SI 09049 0.0616 0.0000 0.0000 0.0335
S2  0.0257 09592 0.0113 0.0008 0.0030
S3  0.0000 0.0005 0.9591 0.0257 0.0147
S4  0.0000 0.0001 0.0668 0.5796  0.3535
S5 0.0001 0.0000 0.0025 0.0241 0.9732
Sum of diagonals: 4.376039
Mean of diagonals: 0.8752078
Minimal of diagonals: 0.5796

TABLE 10
Transition matrix between clusters of Alanine dipeptide obtained by
Gibbs’

S0 S1 S2 S3 S4
SO 0.2867 0.1629 0.2686 02242  0.0576
S1  0.0048 0.9417 0.0037 0.0013 0.0486
S2  0.0256 0.0112 0.9497 0.0115 0.0019
S3  0.3437 0.0608 0.1761 0.3414 0.0780
S4 0.0021 0.0609 0.0008 0.0017 0.9345

with Sy = 500,S. = 0,P. = Py = 0.6. The results are
similar as shown by the high ARI values in Table 12. For S,
since it is the minimal size of a cluster to be recognized as
a meaningful one, results won’t change as long as S is less
than the minimal size of the clusters that we get. For Py, we
get the same result for any Py within (0.6,0.75).

3.6 Results from TRDG and MVCA
Results from TRDG

In this section, we show the result of applying TRDG
to alanine dipeptide. We follow the steps in [5]: (1) In
clustering step, microstates are obtained by grid clustering
(see Section 3.2); (2) Estimating the free energy of each
microstates F; ~ —kT'In(Z;) [5], with Z; being the number
of times the system visited the microstate; (3) Estimating the
energy barrier F;; ~ —kT In(Z;;) [5] between microstates,
where Z;; is the minimum cut between microstates
found by using Gomory-Hu algorithm implemented in
the function “gomory_hu_tree” from the Python package
“igraph”*; (4) Starting with the lowest energy barrier
F;;, we construct the disconnectivity graph by connecting
successively microstates in order of increasing F;;. This step
clusters microstates by using hierarchical clustering with
single linkage.

To better illustrate the behavior of TRDG on alanine
dipeptide, we construct TRDG based on microstates from
grids with different sizes, i.e, a 10x10 grid, a 20x20 grid
and an 80x80 grid. Figure 7 shows the results. Figure 7(A)
shows the benchmark clustering results [6] of microstates
defined by a 10 x 10 grid. Note that ideally a 10x 10 grid will
give 100 clusters (microstates); however, some of them are
empty, which result in 90 non-empty clusters (microstates)
as shown in Figure 7(A). The numbers from 1 to 90
are the indexes of microstates, and their locations denote
the centers of the corresponding microstates. Figure 7(B)

. https:/ /igraph.org/python/

Sum of diagonals: 3.4540
Mean of diagonals: 0.6908
Minimal of diagonals: 0.2867

shows the TRDG | results based on microstates defined
in Figure 7(A). As shown in Figure 7(B), TRDG correctly
recognized the microstates 31, 83, 75 and 72 as local stable
states. However, microstates 72 and 83 should not be
clustered separately since they are actually from the same
cluster S1. In addition, we represent the TRDG results in
Figure 7(B) as a phylogenetic tree shown in Figure 7(C),
which contains the same clustering structure as the one
in (B), and is easier to read with the label coloring. As
shown in Figure 7(C), TRDG does not perform well on this
dataset in terms of clustering, since the benchmark clusters
are mixed up. Figure 7(D) and Figure 7(E) shows the TRDG
results based on microstates defined by a 20 x 20 grid and
an 80 x 80 grid, respectively. Since we care more about
the performance of TRDG on clustering, we only show the
phylogenetic tree representation of the TRDG for presenting
clearly the cluster structure. By refining the microstates, the
clustering structure from TRDG is not improved as shown
in Figure 7(D & E).

Note that we compare different methods based on
microstates defined by an 80 x 80 grid. According to the
results in SI Figure 7(E) and Figure 4 in the main paper,
TRDG did not performance well in terms of clustering.

Results from MVCA

In this section, we show the result of applying TRDG
to alanine dipeptide. We follow the steps in [7]: (1)
using symmetric Jensen-Shannon divergence to measure
the similarity between microstates; (2) using agglomerative
clustering with Wards minimum variance criterion to cluster
microstates into macrostates (metastable states), and cutting
the hierarchical clustering tree to give 6 clusters. The results
are show in Figure 8.

t. The disconnectivity graph is plotted by using the package
“disconnectionDPS” downloaded from http://www-wales.ch.cam.ac.
uk/software.html
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Fig. 7. Transition disconnectivity graph (TRDG) of alanine dipeptide. The y-axis for (B-E) shows the free energy from low to high. (A) A 10x 10 grid
generates 90 non-empty microstates from 6 benchmark clusters (S1-S6) with cluster color code at the top. The numbers located at the center of
each microstate are the indexes of microstates. (B) TRDG results with microstates defined by (A). The label of each node corresponds to the index
of the microstate in (A). (C) Phylogenetic tree representation of the TRDG results in (B). It contains the same information in (B), but with extra
coloring for the labels. The label of each node corresponds to the index of the microstate in (A). The color of labels corresponds to the cluster color
in (A). (D) Phylogenetic tree representation of the TRDG for microstates defined by a 20 x 20 grid. The color of labels corresponds to the cluster
color in (A). (E) Phylogenetic tree representation of the TRDG for microstates defined by an 80 x 80 grid. The color of labels corresponds to the
cluster color in (A).

4 DETAILS ABOUT ANALYZING HP35 NLE/NLE Gaussian kernel. The partition tree is shown in Figure 9. We
4.1 The value of dy then tried 5 different values for dy to compute the LDc and

We applied CAPT on the MD data of HP35 Nle/Nle by
using Py = 0.7, P, = 0.95, 5y = 500, S, = 10000, and the



Transition matrix between clusters of Alanine dipeptide obtained by

TABLE 11

Gibbs”

S0

S1

S2

S3

S4

S5

S6

S0 0.9258
S1 0.0015
52 0.1087
S3 0.0502
5S4 0.0008
S5 0.0670
S6 0.0182

0.0055
0.9337
0.2027
0.0774
0.0477
0.0044
0.0166

0.0045
0.0021
0.2510
0.1363
0.0007
0.0072
0.0363

0.0030
0.0010
0.1638
0.2846
0.0024
0.0054
0.0979

0.0035
0.0607
0.0792
0.2388
0.9418
0.0416
0.0269

0.0562
0.0008
0.1329
0.0785
0.0062
0.8740
0.0047

0.0015
0.0003
0.0617
0.1341
0.0004
0.0004
0.7994

Sum of diagonals: 5.0102
Mean of diagonals: 0.7157
Minimal of diagonals: 0.2510

TABLE 13
The maximal local density LDc&LDa of each CAPT cluster calculated
using different do. ST stands for similarity threshold, Q. is the short for

TABLE 12
ARI between cluster labels resulted from different kernel functions for
analyzing Alanine dipeptide

ARI von Mises  Epanechnikov
Gaussian 0.995622 0.9953416
Epanechnikov  0.9909818 -

Fig. 8. Clustering results of alanine dipeptide from MVCA. Different
colors present different clusters.

LDa values for the obtained clusters. Results are given in
Table 13. We find that the order of the maximal LDc of these
clusters do not vary with do. However, the stable structure,
i.e., the frame with maximal LDc in each cluster, may vary
with dj, as shown in Figure 10. In the figure, the structures
with the same color in each row are exactly the same frame.
The MAD between the center of C39 under case B and case
Cis 0.1727754; The center of each cluster does not vary with
dp, when dg < 0.1972243, and we set dy = 0.1757350.

4.2 Comparison with MPP

LDs of clusters obtained by MPP # are given in Table 14.
Corresponding structures with the maximal LDc in each
cluster are given in Figure 11. We find that the LDc’s
of cluster U and N2 are 67 and 8 respectively when
do = 0.1757350, which are smaller than the 6-th most stable
cluster found by CAPT (LDc=763).

1. The clustering labels are provided by the authors of [3]

quantile.

ST do = do = do = do = do =
0.3418513 |0.2318932(0.1972243 |0.1757350(0.1594225
Q. (50%) (5%) (0.5%) (0.05%) | (0.005%)
LDc LDa| LDc LDa| LDc LDa|LDc LDa|LDc LDa
C1 12 12 3 3 2 2 1 1 1 1

C2 46 46 3 3 1 1 1 1 1

C3 67 67 4 4 1 1 1 1 1 1
C4 22 23 2 2 1 1 1 1 1 1
C5 24 24 3 3 1 1 1 1 1 1
Cé6 36 36 4 4 1 1 1 1 1 1
Cc7 33 33 3 3 2 2 1 1 1 1
C8 48 48 4 4 1 1 1 1 1 1
9 180 220, 42 42 6 6/ 3 3 1 1
C10 22 22 2 2 2 2 1 1 1 1
C11 15 15 3 3 1 1 1 1 1 1
C12 28 28 3 3 2 2 1 1 1 1
C13 23 23 7 7 2 2 1 1 1 1
Cl4 19 19 3 3 1 1 1 1 1 1
C15 46 46 3 3 1 1 1 1 1 1
Cl16 35 35 5 5 2 2 2 2 1 1
C17| 552 1322 61 66 12 12 2 2 1 1
C18 46 50 6 6 1 1 1 1 1 1
C19 31 32 6 6 1 1 1 1 1 1
C20 80 80 12 12 3 3 1 1 1 1
C21 103 103 22 22 4 4 1 1 1 1
C22 37 50 5 5 2 2 1 1 1 1
C23 47 47 4 4 2 2 1 1 1 1
C24 69 69 7 7 2 2l 2 2 1 1
C25 89 92 16 16 3 3 1 1 1 1
C26 62 62 3 3 1 1 1 1 1 1
C27 79 79 6 6 2 2 1 1 1 1
C28 104 104 38 38 4 4 2 2 1 1
C29 41 43 4 4 2 2 1 1 1 1
C30 180 180 10 10 2 2 1 1 1 1
C31 44 46 6 6 2 2 1 1 1 1
C32 87 87 5 5 1 1 1 1 1 1
C33 88 88 11 11 3 3 2 2 1 1
C34 28 30 4 4 2 2 1 1 1 1
C35 34 36 6 6 2 2 1 1 1 1
C36 29 29 3 3 1 1 1 1 1 1
C37 230 5977 25 25 5 5 3 3 1 1
C38 63 63 4 4 2 2 1 1 1 1
C39| 2225 74916| 627 638 126 126/ 21 21 4 4
C40 126 144 10 10 3 3 1 1 1 1
C41 113 121 10 10 3 3 1 1 1 1
C42 66 66 7 7 2 2 1 1 1 1
C43 109 109 9 9 3 3 2 2 1 1
C44 59 59 9 9 2 21 2 2 1 1
C45 45 46 6 6 2 2 1 1 1 1
C46 140 140, 40 40 4 4 2 2 1 1
C47| 184135321 23 1228 5 20 2 2 1 1
C48 197 200, 23 23 6 6 2 2 1 1
C49 88 89 8 8 2 2 1 1 1 1
C50| 325140438) 20 20 5 5 2 2 1 1
C51 167 169 12 12 3 3 2 2 1 1
C52 158 180 21 21 6 6| 2 2 1 1
C53| 4283 7914| 554 573 83 83| 14 14, 3 3
C54 90 118 8 9 2 2 1 1 1 1
C55 104 208 34 34 11 11 3 31 2 2
C56| 5504 6852| 554 554/ 110 110, 20 200 4 4
C57| 1719 2734 62 63 7 7| 2 2 1 1
C58| 4735 14087| 118 118 38 38| 14 14| 4 4
(59306331 307503|86021 86022|28297 28299|6854 6854|1303 1303
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Fig. 9. Partition tree of HP35 Nle/Nle, with So = 500, Py = 0.7, S¢
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= 10000, P. = 0.95 and the Gaussian kernel.
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Fig. 10. Different stable structures resulting from different dy by CAPT.
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do = 0.1972243; (C) dg = 0.1757350; (D) dp = 0.1594225. The MAD
between the centers of C39 under Case B and Case C is 0.1727754.
The structures with the same color in each row are exactly the same
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Fig. 11. Different stable structures resulting from different do by MPP.
MPP found five clusters: I1, 12, U, N1 and N2. Each column corresponds
to different dp: (A) do = 0.2318932; (B) dp = 0.1972243; (C) dy =
0.1757350; (D) do = 0.1594225. Detailed values of LDc and LDa are
given in Table 14. The structures with the same color in each row are
exactly the same frame.

4.3 Sensitivity analysis

In this part, we conduct the sensitivity analysis for the
parameters Sy and P, as well as the kernel function for
density estimation. Sy, as discussed before, only determines
the minimal size of each cluster we obtained. We set
Sp = 10000 for previous experiments. Here we also give
the results while using Sy = 500 with Py = 0.7 and the
Gaussian kernel. Since there are many clusters, we first set
P, = 0.95. The results are given in Table 13 and the partition
tree is shown in Figure 9. These results show that there

TABLE 14
The maximal local density LDc&LDa of each MPP cluster calculated
using different do. ST stands for similarity threshold, Q. is the short for

quantile.
ST/Q. 11 N1 U 12 N2
dop = 0.3418513 | LDc | 114766 111358 10134 84735 10647
(50%) LDa | 307002 294150 119336 297628 44064
do = 0.2318932 | LDc | 71943 55576 1978 20080 499
(5%) LDa | 82447 58818 2223 31423 535
do = 0.1972243 | LDc | 27375 15659 376 4356 49
(0.5%) LDa | 28299 15726 379 4759 49
do = 0.1757350 | LDc | 6766 3789 67 816 8
(0.05%) LDa | 6854 3790 67 839 8
do = 0.1594225 | LDc | 1293 737 12 130 3
(0.005%) LDa | 1303 737 12 133 3

is only one stable cluster C59 with LDc=6854. We then set
P. = 0.7 and run CAPT on C59. The partition tree is shown
in Figure 13, where we find 6 stable clusters, as shown in
Table 15. These are exactly the same results found by setting
Sop = 10000. However, with a too large Sy, we can not get
the right number of clusters. Taking Alanine dipeptide as
an example, we only get 4 clusters if we set Sy = 1948 (i.e.,
1% of the whole population), because there are only 1529
and 425 frames in the clusters S5 and S6 of Figure 4(A) in
the main paper, respectively. So if one wants to explore the
whole cluster structure, one should set a smaller value for
Sp, say, 100 < Sy < 500. For complex biomolecules, one
may be interested only in the stable structures, and a larger
value for Sy seems more efficient in such cases.

TABLE 15
LDc of HP35 Nle/Nle clusters in the partition tree shown in Figure 13.
do is set as 0.1757350.

Cluster L1 L2 L3 L4 L[5 L6 L7 L8 L9
LDc 1 1 1 2 1 1 1 8 1
Cluster L10 L11 ©L[12 ©L[13 L14 L15 Lle L17 L18
LDc 1 3 2 1 1 14 2 1 2
Cluster L19 120 121 122 123 L24 125 126 L27
LDc 1 1 1 1 1 5 1 1 1
Cluster 128 129 130 131 L32 L33 134 L35 L36
LDc 2 1 1 1 22 7 1 1 3
Cluster L37 138 139 140 L[41 142 143 144 145
LDc 1 3 2 2 1 2 1 3 1
Cluster 146 147 148 149 150 L51 L52 L53 L54
LDc 2 1 2 1 1 2 1 2 7
Cluster L55 L56 157 158 159 L60 L6l L62 163
LDc 2 4 1 2 1 7 11 1 2
Cluster L64 L65 L66 L67 L68 Le69 L70 L71 L72
LDc 2 4 2 5 8 3 2 5 4
Cluster L73 L74 L75 L76 L77 L78 L79 180 L81
LDc 2 2 10 20 5 2 2 3 3
Cluster 182 183 184 185 L8 187 188 189 190
LDc 8 2 67 3 51 12 3167 1321 763
Cluster 191 192 193

LDc 834 3662 6854

For Py, we tried five different values {0.6, 0.65, 0.7,
0.75, 0.8}, with Sy = 10000 and the Gaussian kernel. The
resulting partition trees are given in Figure 14, Figure 15,
Figure 16, Figure 17 and Figure 18. The corresponding LDc
values are given in Table 17, Table 18, Table 19, Table 20 and
Table 21. A summary of stable clusters is given in Table 22.
There are only 5 stable clusters when Py = 0.8. For 0.6 <
Py < 0.75, we get 6 stable clusters. Interestingly, although



TABLE 17
LDc with dy = 0.1757350 of centers of HP35 Nle/Nle in partition tree
shown in Figure 14

0.94 0.96 0.98
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Fig. 12. ARI between cluster labels based on different kernel functions
under different value of Sy with S. = 10000, P. = Py = 0.7. The
left panel is for the case Sy = 10000, and the right panel is for the
case Sp = 500. In the figure, the x-axis is the energy barrier and the
y-axis is the ARI. ARI(E,V) is the ARI between cluster labels based
on the Epanechnikov kernel and the von Mises kernel, ARI(G,E) is
the ARI between cluster labels based on the Gaussian kernel and the
Epanechnikov kernel, ARI(G,V) is the ARI between cluster labels based
on the Gaussian kernel and the von Mises kernel.

the resulting partition trees are different for different values
of Py, the key energy barriers between these 6 stable clusters
are the same.

TABLE 16
Transition Matrix between meaningful clusters obtained by CAPT for
HP35 Nle/Nle. 'Other’ are conformations not belonging to S1-S6.

S1
0.0003
0.9230
0.0004
0.0040
0.0000
0.0641
0.0000

S2
0.0033
0.0006
0.9199
0.0000
0.0093
0.0000
0.0020

S3
0.0007
0.0062
0.0000
0.9099
0.0008
0.1430
0.0004

S4
0.0027
0.0000
0.0090
0.0005
0.8826
0.0003
0.0223

S5
0.0002
0.0600
0.0000
0.0736
0.0001
0.7827
0.0009

S6
0.0041
0.0001
0.0046
0.0009
0.0520
0.0032
0.9383

other
0.9886
0.0101
0.0662
0.0111
0.0551
0.0067
0.0361

For the kernel function used for density estimation,
we tried three different kernels: Gaussian, von Mises and
Epanechnikov. They result in the same stable clusters, as
shown in Table 23 and Table 24. Note that for different
kernel functions, the partition trees are a bit different,
as shown in Figure 19 and Figure 20. In addition, we
show the ARI values between cluster labels from different
kernel functions in Figure 12. As we can see from the
figure, ARI is sensitive to the partition score cutoff, which
is reasonable. Different kernel functions result in density
estimates of different smoothness. ARI may drop at some
cutoff, however it will be pulled up later as shown in the
figure. For example, when cutoff=0.82, ARI(G,V)> 0.99;
however, it drops to 0.9 when cutoff=0.81, and goes to 0.96
when cutoff=0.8. Even for the same angle, the partition
scores are different under different kernel functions. That
is, from a local point of view, the result is sensitive to the
kernel function; however, from a global point of view, it is
insensitive to the kernel function.

Cluster L1 L[2 I3 I[4 L5 Lé L7 L8 L9
LDc 2 1 2 3 2 2 2 1 12
Cluster L10 L11 L12 L13 L14 L15 Ll6 L17 L18
LDc 1 14 4 2 3 2 1 2 2
Cluster L19 L[20 L[21 1122 [L[23 L[24 L25 L[26 L27
LDc 1 2 3 51 2 2 1 2 1
Cluster 128 L[29 130 L31 L[32 L33 L34 L35 L36
LDc 2 8 2 2 1 2 1 1 1
Cluster L37 L[38 139 140 [41 142 [43 L[44 145
LDc 4 1 1 2 2 1 2 2 2
Cluster 146 L[47 148 149 [L50 L51 L52 L53 L54
LDc 1 2 2 22 2 3 2 2 1
Cluster L55 L56 L57 L58 L59 L60 L61 L62 L63
LDc 2 3 5 3 3 8 2 2 2
Cluster L64 L65 L66 L67 L68 L69 L70 L71 L72
LDc 1 2 2 4 3 2 2 2 3
Cluster L73 L74 L75 L76 L77 L78 L79 L80 L81
LDc 21 2 2 14 20 2 2 2 2
Cluster 182 L83 L84 L8 L8 L87 L8 L8
LDc 3 1 1321 3167 834 763 3663 6854
TABLE 18

LDc with dg = 0.1757350 of centers of HP35 Nle/Nle in the partition
tree shown in Figure 15

Cluster L1 L[2 L3 L[4 L5 L6 L7 L8 L9
LDc 3 2 2 2 1 14 4 1 14
Cluster L10 L11 ©L[12 1L13 L14 L15 Ll6 L17 L18
LDc 2 3 2 1 2 2 2 2 1
Cluster L19 L[20 L[21 1L[22 [23 [24 125 126 L27
LDc 2 3 51 2 1 1 2 2 2
Cluster L[28 L[29 1L30 1L31 L[32 L33 L34 L35 L36
LDc 2 2 2 8 3 2 2 2 4
Cluster L[37 L[38 ©L39 1[40 [41 [42 143 144 145
LDc 1 1 2 2 2 1 2 2 2
Cluster L[46 [47 148 1149 150 L51 1L52 1L53 L54
LDc 1 2 2 1 1 2 2 3 1
Cluster L55 L56 L57 L58 L59 L60 L61 L62 L63
LDc 3 2 3 1 2 1 2 2 2
Cluster L64 L65 L66 L67 L68 L69 L70 L71 L72
LDc 2 2 4 3 3 1 5 3 2
Cluster L73 L74 L75 L76 L77 L78 1L79 1L80 LS81
LDc 21 2 2 2 2 2 20 1 2
Cluster 182 L83 184 185 L8 L87 188
LDc 12 1321 3167 834 763 3663 6854

5 REMARK ON THE VON MISES KERNEL

Assuming that {0;,7 = 1, ...n} follows vM(u, %), the density
estimate using a standard von Mises kernel [8] is given by

where

10,v) = n(2m)Io(v)

n

Z ev Cos(079i)7

i=1

A2 A
Y- {in/-@ IQ(?K;)} 7
Vlo(k)

k is the MLE of k, I.(v) is the modified Bessel function
of order 7, and v takes the role of (inverse of) smoothing
parameter. In practice, the computer gives Iy(v) = oo when
v > 709, ie., larger than the maximal number that the
computer can handle with. Thus we set v = 709 when v
is actually bigger than 709 in analysis.

ol

@)
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TABLE 22
clusters with maximal LDc (Top 6) under different Py, where S1-6 is the
cluster name used to give a unified comparison. Corresponding
structure is given in Figure 6.

TABLE 19
LDc with dy = 0.1757350 of centers of HP35 Nle/Nle in the partition
tree shown in Figure 16

Cluster L1 L2 13 14 L[5 Le L7 L8 L9
1 2 4
Lbe 1.2 1° 2 2 2 1 4 1 T T IR T T
Cluster L10 L11 L12 L13 L14 L15 Ll6 L17 L18 Py =0.8
LDe 3 ) ) ) u 2 3 51 1 LDc |3167 763 3764 834 - 6854
B cluster [ L79 L81 L8 1L80 L78 L83
Cluiicjez Li9 L%O L%l L§2 L§3 L§4 L;S L§6 L§7 Py =0.75 IDc |3167 763 3666 834 1321 6854
_ cluster | L8 183 L84 L8 L8 L85
Cluiicjez L§8 L§9 LSO Li»l sz LCl’>3 L§4 L;S L§6 Py =0.7 IDe |3167 763 3663 834 1321 6854
- cluster | L84 186 L87 L8 L83 1L88
Cluiicjez L'i’v7 L§8 L§9 LiLO lell L;lz L113 L§4 L§5 Py =0.65 LDc |3167 763 3663 834 1321 6854
luster | L8 187 L8 L8 L84 L89
Cluster 146 147 148 149 150 L51 L52 L53 L54 Py=06 | €
LDc 2 1 2 o 3 1 o o 1 LDc |3167 763 3663 834 1321 6854
Cluster L55 L56 L57 158 L59 L60 L61 L62 L63
LDc 2 2 2 2 4 3 2 1 5
Cluster L64 L65 L66 L67 L68 169 L70 L71 L72 , TABLE 23 , "
LDc 1 o 21 3 1 2 o o ) LDc with do = 0.1757350 of centers of HP35 Nle/Nle in the partition
Cluster L73 L74 L75 176 L77 L78 L79 180 18I tree shown in Figure 19
LDc 2 20 2 2 2 3 12 1321 3167
Cluster L82 L83 L84 L85 Cluster LI L2 L3 L4 15 L6 L7 L8 19
LDc 834 763 3663 6854 ILDc 1 2 1 2 2 2 14 4 1
Cluster L10 L11 L12 L13 ©L14 L15 Ll6é L17 L18
LDc 2 3 2 2 2 14 51 3 1
TABLE 20 Cluster L19 120 L21 122 123 L[24 125 126 L27
LDc 1 1 2 8 2 2 2 2 2
LDc with dg = 0.1757350 of cente_rs OIf HP35 Nle/Nle in the partition Cluster 128 129 130 131 132 L33 L34 135 L36
tree shown in Figure 17 LDc 2 2 2 4 1 1 2 2 2
Cluster L37 138 139 140 141 L[42 143 144 145
LDc 1 3 2 1 2 2 1 2 3
1 L1 L2 L 14 L L L7 L L
CuE]tDez 1 2 13 P 5? 26 14 18 39 Cluster 146 147 148 149 150 L51 152 153 L54
LDc 2 1 2 2 3 1 2 2 1
Clust L10 L11 L12 L13 L14 L15 L16 L17 L18
The 2 o a1 o o TS Cluster L55 L56 L57 L58 L59 L0 Lél Lé62 L63
LDc 2 2 2 2 4 3 2 1 5
1 L1 L20 L[21 L[22 123 L[24 L25 L26 L27
CuLS]tgz e L S Cluster L64 L65 L66 L67 168 L69 L70 L71 L72
LDc 1 2 21 3 1 2 2 2 2
1 L2 L29 L L31 L32 L L34 L 1L
Cuf]t;:z 18 29 ;0 g ? 33 ; %5 36 Cluster L73 174 L75 L76 L77 L78 L79 L80 L81
Cluster 137 138 L39 L40 L41 142 143 L44 145 IDc 2 20 2 2 2 3 12 1321 3167
LDc 2 1 o 3 > 1 2 3 1 Cluster 182 L83 L84 L85
Cluster 146 [47 L[48 149 L50 L51 L52 L53 L54 LDc 834 763 3663 6854
LDc 2 2 2 3 1 2 2 2 4
Cluster 155 156 L57 158 L59 L60 L6l L62 L63
LDc 2 2 2 1 1 2 21 3 1
Cluster L64 165 166 L67 L68 L69 L70 L71 L72 6 PARTITION TREES OF HP35 NLE/NLE UNDER
LDc 2 4 5 2 2 2 20 2 2 DIFFERENT SETTINGS
Cluster L73 L74 L75 L76 L77 178 L79 180 L81
LDc 2 2 5 3 12 1321 3167 834 763 REFERENCES
Cluster 182 L83
LDc 3666 6854 [1] Lars Skjeerven, Xin-Qiu Yao, Guido Scarabelli, and Barry J Grant.
Integrating protein structural dynamics and evolutionary analysis
with bio3d. BMC bioinformatics, 15(1):399, 2014.
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TABLE 24
LDc with dg = 0.1757350 of centers of HP35 Nle/Nle in the partition
tree shown in Figure 20

Cluster L1 2 [3 14 L5 Le L7 L8 L9
LDc 1 1 2 2 1 2 4 1 14
Cluster L10 L11 L12 L[13 L14 L15 L16 L17 L18
LDc 2 2 3 2 1 14 2 5 1
Cluster L19 L[20 [L[21 L[22 123 L[24 125 L26 L27
LDc 3 2 2 1 2 2 1 8 2
Cluster 128 L[29 L[30 L31 1L32 L33 L34 L35 L36
LDc 2 1 2 2 2 4 1 2 2
Cluster L37 L[38 L39 [40 L41 L[42 143 [44 145
LDc 2 3 1 2 2 2 1 2 2
Cluster 146 L[47 148 149 L50 L51 152 L53 L54
LDc 3 2 1 2 1 2 3 2 2
Cluster L55 L56 L57 158 L59 L60 L6l L62 L63
LDc 51 1 2 2 2 4 2 2 3
Cluster L64 L65 Le66 L67 L68 L69 L70 L71 L72
LDc 1 5 1 21 3 2 1 2 2
Cluster L73 L74 L75 L76 L77 L78 L79 L80 L81
LDc 2 2 2 2 2 12 20 2 3
Cluster 182 L83 184 L8 L86 L87
LDc 1321 3167 834 3662 763 6854

[8] Charles C Taylor. Automatic bandwidth selection for circular
density estimation. = Computational Statistics & Data Analysis,
52(7):3493-3500, 2008.
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Fig. 14. Partition tree of HP35 Nle/Nle with Sy = 10000, P. = Py = 0.6, and the Gaussian kernel.
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Fig. 15. Partition tree of HP35 Nle/Nle with S = 10000, P. = Py = 0.65, and the Gaussian kernel.
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Fig. 16. Partition tree of HP35 Nle/Nle with Sy = 10000, P. = Py = 0.7, and the Gaussian kernel.
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Fig. 17. Partition tree of HP35 Nle/Nle with Sy = 10000, P, = Py = 0.75, and the Gaussian kernel.
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Fig. 18. Partition tree of HP35 Nle/Nle with S = 10000, P. = Py = 0.8, and the Gaussian kernel.
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Fig. 19. Partition tree of HP35 Nle/Nle with Sop = 10000, P, = Py = 0.7, and the Epanechnikov kernel.
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Fig. 20. Partition tree of HP35 Nle/Nle with Sy = 10000, P, = Py = 0.7, and the von Mises kernel.



